Welcome to LookChem.com Sign In|Join Free

CAS

  • or

124219-30-3

Post Buying Request

124219-30-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

124219-30-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 124219-30-3 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,4,2,1 and 9 respectively; the second part has 2 digits, 3 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 124219-30:
(8*1)+(7*2)+(6*4)+(5*2)+(4*1)+(3*9)+(2*3)+(1*0)=93
93 % 10 = 3
So 124219-30-3 is a valid CAS Registry Number.

124219-30-3Upstream product

124219-30-3Downstream Products

124219-30-3Relevant articles and documents

Theory and practice of enzyme bioaffinity electrodes. Direct electrochemical product detection

Limoges, Benoit,Marchal, Damien,Mavre, Francois,Saveant, Jean-Michel,Schoellhorn, Bernd

, p. 7259 - 7275 (2008)

The use of enzyme labeling techniques to convert biorecognition events into high sensitivity electrochemical signals may follow two different strategies. One, in which the current is the electrocatalytic response of a redox couple serving as cosubstrate to a redox enzyme label and another that consists in the detection of an electrochemically active product of the enzyme label. The theoretical relationships that link, in the latter case, the electrochemical current response to the amount of recognized labeled target analyte are established for steady-state diffusion-convection chronoamperometric regimes. Two governing parameters thus emerge. One measures the Michaelis-Menten competition in the enzyme kinetics. The other characterizes the competition between the enzymatic kinetics and the diffusion of the substrate. The electrochemical response is finally related to the labeled target analyte concentration in solution through the recognition isotherm. The direct electrochemical product detection thus provides a route to the characteristics of the recognition isotherm, which serves as a calibration curve in analytical applications. The establishment of further theoretical relationships allows one to surmise the increase in sensitivity that may be obtained by using cyclic voltammetry instead of steady-state chronoamperometry in standard electrochemical cells or by accumulation of the enzyme-product in cells of small volume/surface ratios. The theoretical predictions are tested with the example of the avidin-biotin recognition process in a system that involves alkaline phosphatase as enzyme label and 4-amino-2,6-dichlorophenyl phosphate as substrate, generating 4-amino-2,6-dichlorophenol as electrochemically active product. The advantages of the dichlorosubstitution are discussed. The theoretical analysis is a requisite for a rational and realistic discussion of the analytical performances of the steady-state chronoamperometric and cyclic voltammetric approaches. These are shown to compare favorably with the best heterogeneous bioaffinity assays so far reported.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 124219-30-3