Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1932-32-7

Post Buying Request

1932-32-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1932-32-7 Usage

General Description

1-(4-nitrophenyl)-3-phenylurea, also known as NPU, is a chemical compound with the molecular formula C13H10N4O3. It is a white to yellow crystalline powder that is insoluble in water but soluble in organic solvents. NPU is commonly used as a pharmaceutical intermediate in the synthesis of various drugs and as a reagent in chemical research. It is also utilized in the production of rubber chemicals, dyes, and agrochemicals. NPU is considered a hazardous substance and should be handled with care due to its potential health and environmental risks.

Check Digit Verification of cas no

The CAS Registry Mumber 1932-32-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,9,3 and 2 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1932-32:
(6*1)+(5*9)+(4*3)+(3*2)+(2*3)+(1*2)=77
77 % 10 = 7
So 1932-32-7 is a valid CAS Registry Number.

1932-32-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-nitrophenyl)-3-phenylurea

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1932-32-7 SDS

1932-32-7Relevant articles and documents

Molecular design, synthesis and in vitro biological evaluation of thienopyrimidine–hydroxamic acids as chimeric kinase HDAC inhibitors: a challenging approach to combat cancer

Abdel-Atty, Mona M.,Abouzid, Khaled A. M.,Farag, Nahla A.,Mowafy, Samar,Serya, Rabah A. T.

, p. 1290 - 1312 (2021/07/09)

A series of thieno[2,3-d]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds (12c, 15b and 20b) were promising hits, whereas (12c) exhibited potent VEGFR2 inhibition (IC50=185 nM), potent EGFR inhibition (IC50=1.14 μM), and mild HDAC6 inhibition (23% inhibition). Moreover, compound (15c) was the most potent dual inhibitor among all the synthesised compounds, as it exhibited potent EGFR and VEGFR2 inhibition (IC50=19 nM) and (IC50=5.58 μM), respectively. While compounds (20d) and (7c) displayed nanomolar selective kinase inhibition with EGFR IC50= 68 nM and VEGFR2 IC50= 191 nM, respectively. All of the synthesised compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumour cell lines. Additionally, molecular docking studies and ADMET studies were carried out to gain further insight into their binding mode and predict the pharmacokinetic properties of all the synthesised inhibitors.

Direct conversion of carboxylic acids to various nitrogen-containing compounds in the one-pot exploiting curtius rearrangement

Kumar, Arun,Kumar, Naveen,Sharma, Ritika,Bhargava, Gaurav,Mahajan, Dinesh

, p. 11323 - 11334 (2019/09/10)

Herein we report, a single-pot multistep conversion of inactivated carboxylic acids to various N-containing compounds using a common synthetic methodology. The developed methodology rendered the use of carboxylic acids as a direct surrogate of primary amines, for the synthesis of primary ureas, secondary/tertiary ureas, O/S-carbamates, benzoyl ureas, amides, and N-formyls, exploiting the Curtius reaction. This approach has a potential to provide a diversified library of N-containing compounds, starting from a single carboxylic acid, based on the selection of the nucleophile.

Phenyl and Diaryl Ureas with Thiazolo[5,4-d]pyrimidine Scaffold as Angiogenesis Inhibitors: Design, Synthesis and Biological Evaluation

Xue, Wen-Jun,Deng, Ya-Hui,Yan, Zhong-Hui,Liu, Ji-Ping,Liu, Yu,Sun, Li-Ping

, (2019/04/03)

Angiogenesis is crucial for tumor growth and inhibition of angiogenesis has been regarded as a promising approach for cancer therapy. Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important factor in angiogenesis. In this work, a novel series of thiazolo[5,4-d]pyrimidine derivatives inhibiting angiogenesis were rationally designed and synthesized. Their inhibitory activities against human umbilical vein endothelial cells (HUVEC) were investigated in vitro. 1-(4-Fluorophenyl)-3-{4-[(5-methyl-2-phenyl[1,3]thiazolo[5,4-d]pyrimidin-7-yl)amino]phenyl}urea (19b) and 1-(3-Fluorophenyl)-3-{4-[(5-methyl-2-phenyl[1,3]thiazolo[5,4-d]pyrimidin-7-yl)amino]phenyl}urea (19g) exhibited the most potent inhibitory effect on HUVEC proliferation (IC50=12.8 and 5.3 μm, respectively). Compound 19g could inhibit the migration of human umbilical vein endothelial cells. These results support the further investigation of these compounds as potent anticancer agents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1932-32-7