Welcome to LookChem.com Sign In|Join Free

CAS

  • or

202807-44-1

Post Buying Request

202807-44-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

202807-44-1 Usage

General Description

6-Methoxy-1-methyl-1H-indole-3-carbaldehyde is a chemical compound with the molecular formula C11H11NO2. It is a derivative of indole, a compound commonly found in plant-based materials. This chemical is known for its aromatic properties and is used in industrial processes, including the synthesis of pharmaceuticals and fragrance compounds. The presence of a methoxy group (CH3O) and a methyl group (CH3) on the indole ring gives this compound unique chemical properties, making it a valuable building block in the production of various organic compounds. Additionally, 6-Methoxy-1-methyl-1H-indole-3-carbaldehyde is also used as a research tool in the study of chemical reactions and the development of new synthetic pathways.

Check Digit Verification of cas no

The CAS Registry Mumber 202807-44-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,0,2,8,0 and 7 respectively; the second part has 2 digits, 4 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 202807-44:
(8*2)+(7*0)+(6*2)+(5*8)+(4*0)+(3*7)+(2*4)+(1*4)=101
101 % 10 = 1
So 202807-44-1 is a valid CAS Registry Number.
InChI:InChI=1/C11H11NO2/c1-12-6-8(7-13)10-4-3-9(14-2)5-11(10)12/h3-7H,1-2H3

202807-44-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 6-methoxy-1-methylindole-3-carbaldehyde

1.2 Other means of identification

Product number -
Other names HMS2690D04

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:202807-44-1 SDS

202807-44-1Relevant articles and documents

Cobalt-Catalyzed Enantioselective C–H Arylation of Indoles

Ackermann, Lutz,Jacob, Nicolas,Oliveira, Jo?o C. A.,Wencel-Delord, Joanna,Zaid, Yassir

supporting information, p. 798 - 806 (2022/02/03)

Atropoisomeric (hetero)biaryls are scaffolds with increasing importance in the pharmaceutical and agrochemical industries. Although it is the most obvious disconnection to construct such compounds, the direct enantioselective C–H arylation through the concomitant induction of the chiral information remains extremely challenging and uncommon. Herein, the unprecedented earth-abundant 3d-metal-catalyzed atroposelective direct arylation is reported, furnishing rare atropoisomeric C2-arylated indoles. Kinetic studies and DFT computation revealed an uncommon mechanism for this asymmetric transformation, with the oxidative addition being the rate- and enantio-determining step. Excellent stereoselectivities were reached (up to 96% ee), while using an unusual N-heterocyclic carbene ligand bearing an essential remote substituent. Attractive dispersion interactions along with positive C–H-π interactions exerted by the ligand were identified as key factors to guarantee the excellent enantioselection.

Recyclable and reusablen-Bu4NBF4/PEG-400/H2O system for electrochemical C-3 formylation of indoles with Me3N as a carbonyl source

Cheng, Didi,Li, Jingyi,Li, Yujin,Ling, Fei,Liu, Lei,Liu, Tao,Zhong, Weihui

supporting information, p. 4107 - 4113 (2021/06/17)

A safe, practical and eco-friendly electrochemical methodology for the synthesis of 3-formylated indoles has been developed by the utilization of Me3N as a novel formylating reagent. Stoichiometric oxidants, metal catalysts, and activating agents were avoided in this method, and an aqueous biphasic system ofn-Bu4NBF4/PEG-400/H2O was used as a recyclable and reusable reaction medium, which made this electrosynthesis approach more sustainable and environmentally friendly. This process expanded the substrate scope and functional group tolerance for bothN-EDG andN-EWG indoles. Furthermore, late-stage functionalization and total/formal synthesis of drugs and natural products were realized by means of this route.

Visible Light-Driven C-3 Functionalization of Indoles over Conjugated Microporous Polymers

Zhang, Weijie,Tang, Juntao,Yu, Wenguang,Huang, Qiao,Fu, Yu,Kuang, Guichao,Pan, Chunyue,Yu, Guipeng

, p. 8084 - 8091 (2018/07/30)

Metal-free and heterogeneous organic photocatalysts provide an environmentally friendly alternative to traditional metal-based catalysts. This paper reports a series of carbazole-based conjugated microporous polymers (CMPs) with tunable redox potentials and explores their photocatalytic performance with regard to C-3 formylation and thiocyanation of indoles. Conjugated polymers were synthesized through FeCl3 mediated Friedel-Crafts reactions, and their redox potentials were well regulated by simply altering the nature of the core (i.e., 1,4-dibenzyl, 1,3,5-tribenzyl, or 1,3,5-triazin-2,4,6-triyl). The resulting CMPs exhibited high surface areas, visible light absorptions, and tunable semiconductor-range band gaps. With the highest oxidative capability, CMP-CSU6 derived from 1,3,5-tri(9H-carbazol-9-yl)benzene showed the highest efficiency for C-3 formylation and thiocyanation of indoles at room temperature. Notably, the as-made catalysts can be easily recovered with good retention of photocatalytic activity and reused at least five times, suggesting good recyclability. These results are significant for constructing high-performance porous polymer catalysts with tunable photoredox potentials targeting an efficient material design for catalysis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 202807-44-1