Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22759-33-7

Post Buying Request

22759-33-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22759-33-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 22759-33-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,7,5 and 9 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 22759-33:
(7*2)+(6*2)+(5*7)+(4*5)+(3*9)+(2*3)+(1*3)=117
117 % 10 = 7
So 22759-33-7 is a valid CAS Registry Number.

22759-33-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-hydroxy-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one

1.2 Other means of identification

Product number -
Other names (1S,3S,4R)-3-Hydroxy-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-one

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22759-33-7 SDS

22759-33-7Relevant articles and documents

Exploring the substrate specificity of Cytochrome P450cin

Stok, Jeanette E.,Giang, Peter D.,Wong, Siew Hoon,De Voss, James J.

, (2019/08/02)

Cytochromes P450 are enzymes that catalyse the oxidation of a wide variety of compounds that range from small volatile compounds, such as monoterpenes to larger compounds like steroids. These enzymes can be modified to selectively oxidise substrates of interest, thereby making them attractive for applications in the biotechnology industry. In this study, we screened a small library of terpenes and terpenoid compounds against P450cin and two P450cin mutants, N242A and N242T, that have previously been shown to affect selectivity. Initial screening indicated that P450cin could catalyse the oxidation of most of the monoterpenes tested; however, sesquiterpenes were not substrates for this enzyme or the N242A mutant. Additionally, both P450cin mutants were found to be able to oxidise other bicyclic monoterpenes. For example, the oxidation of (R)- and (S)-camphor by N242T favoured the production of 5-endo-hydroxycamphor (65–77% of the total products, dependent on the enantiomer), which was similar to that previously observed for (R)-camphor with N242A (73%). Selectivity was also observed for both (R)- and (S)-limonene where N242A predominantly produced the cis-limonene 1,2-epoxide (80% of the products following (R)-limonene oxidation) as compared to P450cin (23% of the total products with (R)-limonene). Of the three enzymes screened, only P450cin was observed to catalyse the oxidation of the aromatic terpene p-cymene. All six possible hydroxylation products were generated from an in vivo expression system catalysing the oxidation of p-cymene and were assigned based on 1H NMR and GC-MS fragmentation patterns. Overall, these results have provided the foundation for pursuing new P450cin mutants that can selectively oxidise various monoterpenes for biocatalytic applications.

Multiple monohydroxylation products from rac-camphor by marine fungus Botryosphaeria sp. Isolated from marine alga Bostrychia radicans

De Jesus, Hugo C.R.,Jeller, Alex H.,Debonsi, Hosana M.,Alves, Péricles B.,Porto, André L.M.

, p. 498 - 504 (2017/01/24)

This manuscript describes the biooxidation of rac-camphor using whole cells of marine-derived fungus Botryosphaeria sp. CBMAI 1197. The main biotransformation products of this monoterpene were achieved via a hydroxylation reaction and occurred with 5 days of rac-camphor incubation. Products were identified by means of gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) data. The major hydroxylated products were 6-endo-hydroxycamphor, 6-exo-hydroxycamphor, 5-exo-hydroxycamphor, 5-endo-hydroxycamphor, 3-exo-hydroxycamphor and 8-hydroxycamphor. The 6-exo-hydroxycamphor was obtained through a retro-aldol reaction when 6-endo-hydroxycamphor was maintained in presence of CDCl3; this isomerization was confirmed by 1H NMR and GC-MS data.

General and efficient α-oxygenation of carbonyl compounds by TEMPO induced by single-electron-transfer oxidation of their enolates

Dinca, Emanuela,Hartmann, Philip,Smrcek, Jakub,Dix, Ina,Jones, Peter G.,Jahn, Ullrich

supporting information, p. 4461 - 4482 (2012/10/30)

A generally applicable method for the synthesis of protected α-oxygenated carbonyl compounds is reported. It is based on the single-electron-transfer oxidation of easily generated enolates to the corresponding α-carbonyl radicals. Coupling with the stable free radical TEMPO provides α-(piperidinyloxy) ketones, esters, amides, acids or nitriles in moderate-to-excellent yields. Enolate aggregates influence the outcome of the oxygenation reactions significantly. Competitive reactions have been analyzed and conditions for their minimization are presented. Chemoselective reduction of the products led to either N-O bond cleavage to α-hydroxy carbonyl compounds or reduction of the carbonyl functionality tomonoprotected 1,2-diols or O-protected amino alcohols. The oxygenation of enolates proves to be the most general and effective methodology for the synthesis of O-protected α-oxy carbonyl compounds and nitriles A. The scope and limitations of the electron-transfer-induced radical coupling reaction with TEMPO are presented. The reaction pathways are outlined. Methods for the deprotection to α-hydroxy carbonyl compounds B are provided and discussed. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22759-33-7