Welcome to LookChem.com Sign In|Join Free

CAS

  • or

24425-52-3

Post Buying Request

24425-52-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

24425-52-3 Usage

Chemical Properties

White to Off-White Solid

Uses

An inhibitor of the enzyme Glyoxalase 1.

Check Digit Verification of cas no

The CAS Registry Mumber 24425-52-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,4,4,2 and 5 respectively; the second part has 2 digits, 5 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 24425-52:
(7*2)+(6*4)+(5*4)+(4*2)+(3*5)+(2*5)+(1*2)=93
93 % 10 = 3
So 24425-52-3 is a valid CAS Registry Number.
InChI:InChI=1/C12H21N3O6S/c1-2-22-6-8(11(19)14-5-10(17)18)15-9(16)4-3-7(13)12(20)21/h7-8H,2-6,13H2,1H3,(H,14,19)(H,15,16)(H,17,18)(H,20,21)/t7-,8-/m0/s1

24425-52-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-3-ethylsulfanyl-1-oxopropan-2-yl]amino]-5-oxopentanoic acid

1.2 Other means of identification

Product number -
Other names S-Ethylglutathione

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:24425-52-3 SDS

24425-52-3Downstream Products

24425-52-3Relevant articles and documents

Conjugation of haloalkanes by bacterial and mammalian glutathione transferases: Mono- and vicinal dihaloethanes

Wheeler,Stourman,Thier,Dommermuth,Vuilleumier,Rose,Armstrong,Guengerich

, p. 1107 - 1117 (2007/10/03)

Glutathione (GSH) transferases are generally involved in the detoxication of xenobiotic chemicals. However, conjugation can also activate compounds and result in DNA modification. Activation of 1,2-dihaloethanes (BrCH2CH2Br, BrCH2CH2Cl, and ClCH2CH2Cl) was investigated using two mammalian theta class GSH transferases (rat GST 5-5 and human GST T1) and a bacterial dichloromethane dehalogenase (DM11). Although the literature suggests that the bacterial dehalogenase does not catalyze reactions with CH3Cl, ClCH2CH2Cl, or CH3CHCl2, we found a higher enzyme efficiency for DM11 than for the mammalian GSH transferases in conjugating CH3Cl, CH3CH2Cl, and CH3CH2Br. Enzymatic rates of activation of 1,2-dihaloethanes were determined in vitro by measuring S,S-ethylene-bis-GSH, the major product trapped by nonenzymatic reaction with the substrate GSH. Salmonella typhimurium TA 1535 systems expressing each of these GSH transferases were used to determine mutagenicity. Rates of formation of S,S-ethylene-bis-GSH by the GSH transferases correlated with the mutagenicity determined in the reversion assays for the three 1,2-dihaloethanes, consistent with the view that half-mustards are the mutagenic products of the GSH transferase reactions. Half-mustards [S-(2-haloethyl)GSH] containing either F, Cl, or Br (as the leaving group) were tested for their abilities to induce revertants in S. typhimurium, and rates of hydrolysis were also determined. GSH transferases do not appear to be involved in the breakdown of the half-mustard intermediates. A halide order (Br > Cl) was observed for both GSH transferase-catalyzed mutagenicity and S,S-ethylene-bis-GSH formation from 1,2-dihaloethanes, with the single exception (both assays) of BrCH2CH2Cl reaction with DM11, which was unexpectedly high. The lack of substrate saturation seen for conjugation of dihalomethanes with GSTs 5-5 and T1 was also observed with the mono- and 1,2-dihaloethanes [Wheeler, J. B., Stourman, N. V., Thier, R., Dommermuth, A., Vuilleumier, S., Rose, J. A., Armstrong, R. N., and Guengerich, F. P. (2001) Chem. Res. Toxicol. 14, 1118-1127], indicative of an inherent difference in the catalytic mechanisms of the bacterial and mammalian GSH transferases.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 24425-52-3