Welcome to LookChem.com Sign In|Join Free

CAS

  • or

302-76-1

Post Buying Request

302-76-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

302-76-1 Usage

General Description

17-alpha-methyl-estradiol-17-beta is a synthetic form of the hormone estrogen, created by adding a methyl group at the 17th carbon position of estradiol. It is commonly used in hormone replacement therapy and as a treatment for certain types of breast cancer. This chemical compound has a similar structure to natural estrogen but with a slight modification that allows it to be more potent and have a longer half-life in the body. However, it also carries a higher risk of potential side effects, such as increased risk of blood clots and liver problems. Therefore, it should only be used under the supervision of a healthcare professional and with careful monitoring for any adverse reactions.

Check Digit Verification of cas no

The CAS Registry Mumber 302-76-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,0 and 2 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 302-76:
(5*3)+(4*0)+(3*2)+(2*7)+(1*6)=41
41 % 10 = 1
So 302-76-1 is a valid CAS Registry Number.
InChI:InChI=1/C19H26O2/c1-18-9-7-15-14-6-4-13(20)11-12(14)3-5-16(15)17(18)8-10-19(18,2)21/h4,6,11,15-17,20-21H,3,5,7-10H2,1-2H3/t15-,16-,17+,18+,19+/m1/s1

302-76-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (8R,9S,13S,14S,17S)-13,17-dimethyl-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthrene-3,17-diol

1.2 Other means of identification

Product number -
Other names 17alpha-Methylestradiol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:302-76-1 SDS

302-76-1Downstream Products

302-76-1Relevant articles and documents

-

Haack,Stoeck,Voigt

, p. 429 (1954)

-

New metabolites from fungal biotransformation of an oral contraceptive agent: Methyloestrenolone

Zafar, Salman,Bibi, Marium,Yousuf, Sammer,Choudhary, M. Iqbal

, p. 418 - 425 (2013/05/08)

Fungal cell cultures were used for the first time for the biotransformation of methyloestrenolone (1), an oral contraceptive. Fermentation of 1 with Macrophomina phaseolina, Aspergillus niger, Gibberella fujikuroi, and Cunninghamella echinulata produced eleven metabolites 2-12, six of which 2-5, 11 and 12 were found to be new. These metabolites were resulted from the hydroxylation at C-1, C-2, C-6, C-10, C-11, and C-17α-CH3, as well as aromatization of ring A of the steroidal skeleton of substrate 1. The transformed products were identified as 17α-methyl-6β,17β- dihydroxyestr-4-en-3-one (2), 17α-(hydroxymethyl)-11β,17β- dihydroxyestr-4-en-3-one (3), 17α-methyl-2α,11β,17β- trihydroxyestr-4-en-3-one (4), 17α-methyl-1β,17β-dihydroxyestr- 4-en-3-one (5), 17α-methyl-11α,17β-dihydroxyestr-4-en-3-one (6), 17α-methyl-11β,17β-dihydroxyestr-4-en-3-one (7), 17α-methyl-10β,17β-dihydroxyestr-4-en-3-one (8), 17α-(hydroxymethyl)-17β-hydroxyestr-4-en-3-one (9), 17α-methylestr-1,3,5(10)-trien-3,17β-diol (10), 17α-methyl-3, 17β-dihydroxyestr-1,3,5(10)-trien-6-one (11), and 17α-methyl-6β, 10β,17β-trihydroxyestr-4-en-3-one (12).

Structure-activity relationships of 17α-derivatives of estradiol as inhibitors of steroid sulfatase

Boivin,Luu-The,Lachance,Labrie,Poirier

, p. 4465 - 4478 (2007/10/03)

The steroid sulfatase or steryl sulfatase is a microsomal enzyme widely distributed in human tissues that catalyzes the hydrolysis of sulfated 3-hydroxy steroids to the corresponding free active 3-hydroxy steroids. Since androgens and estrogens may be synthesized inside the cancerous cells starting from dehydroepiandrosterone sulfate (DHEAS) and estrone sulfate (E1S) available in blood circulation, the use of therapeutic agents that inhibit steroid sulfatase activity may be a rewarding approach to the treatment of androgeno-sensitive and estrogeno-sensitive diseases. In the present study, we report the chemical synthesis and biological evaluation of a new family of steroid sulfatase inhibitors. The inhibitors were designed by adding an alkyl, a phenyl, a benzyl, or a benzyl substituted at position 17α of estradiol (E2), a C18-steroid, and enzymatic assays were performed using the steroid sulfatase of homogenized JEG-3 cells or transfected in HEK-293 cells. We observed that a hydrophobic substituent induces powerful inhibition of steroid sulfatase while a hydrophilic one was weak. Although a hydrophobic group at the 17α-position increased the inhibitory activity, the steric factors contribute to the opposite effect. As exemplified by 17α-decyl-E2 and 17α-dodecyl-E2, a long flexible side chain prevents adequate fitting into the enzyme catalytic site, thus decreasing capacity to inhibit the steroid sulfatase activity. In the alkyl series, the best compromise between hydrophobicity and steric hindrance was obtained with the octyl group (IC50 = 440 nM), but judicious branching of side chain could improve this further. Benzyl substituted derivatives of estradiol were better inhibitors than alkyl analogues. Among the series of 17α-(benzyl substituted)-E2 derivatives studied, the 3′-bromobenzyl, 4′-tert-butylbenzyl, 4′-butylbenzyl, and 4′-benzyloxybenzyl groups provided the most potent inhibition of steroid sulfatase transformation of E1S into E1 (IC50 = 24, 28, 25, and 22 nM, respectively). As an example, the tert-butylbenzyl group increases the ability of the E2 nucleus to inhibit the steroid sulfatase by 3000-fold, and it also inhibits similarly the steroid sulfatase transformations of both natural substrates, E1S and DHEAS. Interestingly, the newly reported family of steroid sulfatase inhibitors acts by a reversible mechanism of action that is different from the irreversible mechanism of the known inhibitor estrone sulfamate (EMATE).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 302-76-1