Welcome to LookChem.com Sign In|Join Free

CAS

  • or

383424-15-5

Post Buying Request

383424-15-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

383424-15-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 383424-15-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 3,8,3,4,2 and 4 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 383424-15:
(8*3)+(7*8)+(6*3)+(5*4)+(4*2)+(3*4)+(2*1)+(1*5)=145
145 % 10 = 5
So 383424-15-5 is a valid CAS Registry Number.

383424-15-5Downstream Products

383424-15-5Relevant articles and documents

Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5- acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction

Gao, Yingning,Zhang, Xiaomei,Ma, Changqin,Li, Xiyou,Jiang, Jianzhuang

supporting information; experimental part, p. 17044 - 17052 (2009/04/13)

Novel metal-free 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin H2[DP(CH3COSC5H10O)2P] (1) and its zinc congener Zn[DP(CH3COSC5H 10O)2P] (2) were designed and synthesized. Single-crystal X-ray diffraction (XRD) analysis confirmed the tetrapyrrole nature of these two compounds, revealing the existence of metal-ligand coordination bond between the carbonyl oxygen in the aryloxy side chain of meso-attached phenyl group in the porphyrin molecule with the zinc center of neighboring porphyrin molecule in the crystal structure of 2. This intermolecular Zn-O coordination bond induces the formation of a supramolecular chain structure in which the porphyrinato zinc moieties are arranged in a "head-to-tail" mode (J-aggregate), which is in contrast to a "face-to-face" stacking mode (H-aggregate) in the supramolecular structure formed depending on the C-H?π interaction in the crystal of 1. Their self-assembling properties in MeOH and n-hexane were comparatively investigated by scanning electronic microscopy and XRD technique. Intermolecular π-π interaction of metal-free porphyrin 1 leads to the formation of hollow nanospheres and nanoribbons in MeOH and n-hexane, respectively. In contrast, introduction of additional Zn-O coordination bond for porphyrinato zinc complex 2 induces competition with intermolecular π-π interaction, resulting in nanostructures with nanorod and hollow nanosphere morphology in MeOH and n-hexane. The IR and XRD results clearly reveal the presence and absence of such metal-ligand coordination bond in the nanostructures formed from porphyrinato zinc complex 2 and metal-free porphyrin 1, respectively, which is further unambiguously confirmed by the single-crystal XRD analysis result for both compounds. Electronic absorption spectroscopic data on the self-assembled nanostructures reveal the H-aggregate nature in the hollow nanospheres and nanoribbons formed from metal-free porphyrin 1 due to the π-π intermolecular interaction between porphyrin molecules and J-aggregate nature in the nanorods and hollow nanospheres of 2 depending on the dominant metal-ligand coordination bonding interaction among the porphyrinato zinc molecules. The present result appears to represent the first effort toward controlling and tuning the morphology of self-assembled nanostructures of porphyrin derivatives via molecular design and synthesis through introduction of metal-ligand coordination bonding interaction. Nevertheless, availability of single crystal and molecular structure revealed by XRD analysis for both porphyrin derivatives renders it possible to investigate the formation mechanism as well as the molecular packing conformation of self-assembled nanostructures of these typical organic building blocks with large conjugated system in a more confirmed manner.

Hydrogen-bonded CdS nanoparticle assemblies on electrodes for photoelectrochemical applications

Baron, Ronan,Huang, Chih-Hao,Bassani, Dario M.,Onopriyenko, Avital,Zayats, Maya,Willner, Itamar

, p. 4010 - 4015 (2007/10/03)

(Chemical Equation Presented) Trapping the light fantastic-ally! Enhanced photocurrents are observed for hydrogen-bonded gold nanoparticle/CdS nanoparticle arrays associated with a gold electrode surface (see scheme) as a result of charge separation and c

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 383424-15-5