Welcome to LookChem.com Sign In|Join Free

CAS

  • or

39227-53-7

Post Buying Request

39227-53-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

39227-53-7 Usage

Description

1-Chlorodibenzo-p-dioxin, also known as 1-CDDO, is an organic compound belonging to the dibenzo-p-dioxin family. It is characterized by the presence of a chlorine atom at the first position and exhibits unique chemical and physical properties. Due to its structural similarity to other dioxin compounds, it has been utilized in various research and testing applications.

Uses

Used in Environmental Testing and Research:
1-Chlorodibenzo-p-dioxin is used as a standard for environmental testing and research, particularly in the study of tetrachlorodibenzo-p-dioxin (TCDD) impairment on human B lymphopoiesis. This application is crucial for understanding the effects of dioxin-like compounds on human health and the environment, as well as for developing methods to mitigate their impact.

Check Digit Verification of cas no

The CAS Registry Mumber 39227-53-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,9,2,2 and 7 respectively; the second part has 2 digits, 5 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 39227-53:
(7*3)+(6*9)+(5*2)+(4*2)+(3*7)+(2*5)+(1*3)=127
127 % 10 = 7
So 39227-53-7 is a valid CAS Registry Number.
InChI:InChI=1/C12H7ClO2/c13-8-4-3-7-11-12(8)15-10-6-2-1-5-9(10)14-11/h1-7H

39227-53-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-Chlorodibenzo-p-dioxin

1.2 Other means of identification

Product number -
Other names 1-chlorodibenzodioxin

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:39227-53-7 SDS

39227-53-7Relevant articles and documents

Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process

Ryu, Jae-Yong

, p. 1100 - 1109 (2008/12/21)

Formation of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and chlorinated phenols on CuCl2 from unsubstituted phenol and three monochlorophenols was studied in a flow reactor over a temperature range of 100-425 °C. Heated nitrogen gas streams containing 8.0% oxygen were used as carrier gas. The 0.00024 mol of unsubstituted phenol and 0.00039 mol of each monochlorophenol were passed through a 1 g and 1 cm SiO2 particle containing 0.5% (Cu by mass) CuCl2. Chlorination preferentially occurred on ortho-(2, 6) and para-(4) positions. Chlorination increased up to 200 °C, and thereafter decreased as temperature increased. Chlorination of phenols plays an important role in the formation of the more chlorinated PCDD/Fs. Chlorinated benzenes are formed possibly from both chlorination of benzene and chlorodehydroxylation of phenols. Chlorinated phenols with ortho chlorine formed PCDD products, and major PCDD products were produced via loss of one chlorine. For PCDF formation, at least one unchlorinated ortho carbon was required.

A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/Silica surface

Lomnicki, Slawomir,Dellinger, Barry

, p. 4387 - 4395 (2007/10/03)

The formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) via a Cu(II)O-mediated reaction of 2-chlorophenol (2-MCP) has been studied in a packed bed reactor over a temperature range of 200-500 °C. Under oxidative conditions, the principle PCDD/F products were 1-monochlorodibenzo-p-dioxin (MCDD) > 4,6-dichlorodibenzofuran (DCDF) > dibenzo-p-dioxin (DD). EPR studies indicated the presence of a carbon-centered phenoxyl radical on the surface, which is attributed to chemisorption of 2-MCP at a copper oxide site followed by electron transfer to Cu(II) to form Cu(I) and a phenoxyl radical. The presence of a surface bound phenoxyl radical and the formation of MCDD, DCDF, and DD, which were also observed as the principle products of the gas-phase oxidation of 2-MCP, strongly suggest a surface-mediated mechanism involving many of the same radical and molecular species involved in the gas-phase formation of PCDD/F from 2-MCP. Reaction orders of 0.5-1.0 were observed for MCDD and DD formation, indicating an Eley-Rideal formation mechanism. Negative reaction orders were observed for DCDF formation, indicating a Langmuir-Hinshelwood formation mechanism. No highly chlorinated PCDFs were observed, suggesting a mechanism in which DCDF is desorbed from the surface before it can undergo additional chlorination. Highly chlorinated PCDDs were observed, which were consistent with a mechanism in which DD remained adsorbed to the surface and underwent additional chlorination. Chloro-o-quinone and chlorocatechol, which are precursors to semiquinone radicals, were also observed products. A detailed reaction mechanism accounting for all reported products is proposed.

Identification of surrogate compounds for the emission of PCDD/F (I-TEQ value) and evaluation of their on-line realtime detectability in flue gases of waste incineration plants by REMPI-TOFMS mass spectrometry

Blumenstock,Zimmermann,Schramm,Kettrup

, p. 507 - 518 (2007/10/03)

Correlations between products of incomplete combustion (PIC), e.g., chloroaromatic compounds, can be used to characterise the emissions from combustion processes, like municipal or hazardous waste incineration. A possible application of such relationships may be the on-line real-time monitoring of a characteristic surrogate, e.g., with Resonance-Enhanced Multiphoton Ionization-Time-of-Flight Mass Spectrometry (REMPI-TOFMS). In this paper, we report the relationships of homologues and individual congeners of chlorinated benzenes (PCBz), dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and phenols (PCPh) to the International Toxicity Equivalent (I-TEQ) of the PCDD/F (I-TEQ value) in the flue gas and stack gas of a 22 MW hazardous waste incinerator (HWI). As the REMPI detection sensitivity is decreasing with the increase of the degree of chlorination, this study focuses on the lower chlorinated species of the compounds mentioned above. Lower chlorinated species, e.g., chlorobenzene (MCBz), 1,4-dichlorobenzene, 2,4,6-trichlorodibenzofuran or 2,4-dichlorophenol, were identified as I-TEQ surrogates in the flue gas. In contrast to the higher chlorinated phenols, the lower chlorinated phenols (degree of chlorination 4) were not reliable as surrogates in the stack gas. The identified surrogates are evaluated in terms of their detectability by REMPI-TOFMS laser mass spectrometry. The outcome is that MCBz is the best suited surrogate for (indirect) on-line measuring of the I-TEQ value in the flue gas by REMPI-TOFMS. The correlation coefficient r of the MCBz concentration to the I-TEQ in the flue gas was 0.85.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 39227-53-7