Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5326-87-4

Post Buying Request

5326-87-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5326-87-4 Usage

Preparation

A clean iodine flask rinsed with distilled water was taken and addition of 10 ml solution of 10 % sodium carbonate was done. Then 0.05g of aniline was poured and mixedevenly. Then slow and safe addition of acid was done and shaken properly until ppts of acetamide appeared. Filtered it and dried the ppts. Confirmation of reaction was checked by performing TLC. Solid product then obtained was weighed and kept.

Check Digit Verification of cas no

The CAS Registry Mumber 5326-87-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,3,2 and 6 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 5326-87:
(6*5)+(5*3)+(4*2)+(3*6)+(2*8)+(1*7)=94
94 % 10 = 4
So 5326-87-4 is a valid CAS Registry Number.

5326-87-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Bromo-N-phenylacetamide

1.2 Other means of identification

Product number -
Other names 2-BROMO-N-PHENYL-ACETAMIDE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5326-87-4 SDS

5326-87-4Relevant articles and documents

Rapid routes of synthesis of oligonucleotide conjugates from non-protected oligonucleotides and ligands possessing different nucleophilic or electrophilic functional groups

Grimm,Boutorine,Helene

, p. 1943 - 1965 (2000)

Optimized methods are described for post-synthetic conjugation of non-protected oligodeoxyribonucleotides to different ligands. Methods for the terminal functionalization of oligonucleotides by amino, sulfhydryl, thiophosphate or carboxyl groups using dif

N-Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air

Tan, Hui,Wang, Shen-An,Yan, Zixi,Liu, Jianzhong,Wei, Jialiang,Song, Song,Jiao, Ning

supporting information, p. 2140 - 2144 (2020/12/01)

Oxygenation reactions with molecular oxygen (O2) as the oxygen source provides a green and straightforward strategy for the construction of O-containing compounds. Demonstrated here is a novel N-heterocyclic carbene (NHC) catalyzed oxidative transformation of simple and readily available organic halides into valuable esters through the incorporation of O-atoms from O2. Mechanistic studies prove that the deoxy Breslow intermediate generated in situ is oxidized to a Breslow intermediate for further transformation by this oxidative protocol. This method broadens the field of NHC catalysis and promotes oxygenation reactions with O2.

Probing phenylcarbamoylazinane-1,2,4-triazole amides derivatives as lipoxygenase inhibitors along with cytotoxic, ADME and molecular docking studies

Muzaffar, Saima,Shahid, Wardah,Riaz, Naheed,Saleem, Muhammad,Ashraf, Muhammad,Aziz-ur-Rehman,Bashir, Bushra,Kaleem, Ayesha,al-Rashida, Mariya,Baral, Bikash,Bhattarai, Keshab,Gross, Harald

, (2020/12/21)

Hunting small molecules as anti-inflammatory agents/drugs is an expanding and successful approach to treat several inflammatory diseases such as cancer, asthma, arthritis, and psoriasis. Besides other methods, inflammatory diseases can be treated by lipoxygenase inhibitors, which have a profound influence on the development and progression of inflammation. In the present study, a series of new N-alkyl/aralky/aryl derivatives (7a-o) of 2-(4-phenyl-5-(1-phenylcarbamoyl)piperidine-4H-1,2,4-triazol-3-ylthio)acetamide was synthesized and screened for their inhibitory potential against the enzyme 15-lipoxygenase. The simple precursor ethyl piperidine-4-carboxylate (a) was successively converted into phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and N-phenylated 5-(1-phenylcarbamoyl)piperidine-1,2,4-triazole (4), then in combination with electrophiles (6a-o) through further multistep synthesis, final products (7a-o) were generated. All the synthesized compounds were characterized by FTIR, 1H, 13C NMR spectroscopy, EIMS, and HREIMS spectrometry. Almost all the synthesized compounds showed excellent inhibitory potential against the tested enzyme. Compounds 7c, 7f, 7d, and 7g displayed potent inhibitory potential (IC50 9.25 ± 0.26 to 21.82 ± 0.35 μM), followed by the compounds 7n, 7h, 7e, 7a, 7b, 7l, and 7o with IC50 values in the range of 24.56 ± 0.45 to 46.91 ± 0.57 μM. Compounds 7c, 7f, 7d exhibited 71.5 to 83.5% cellular viability by MTT assay compared with standard curcumin (76.9%) when assayed at 0.125 mM concentration. In silico ADME studies supported the drug-likeness of most of the molecules. In vitro inhibition studies were substantiated by molecular docking wherein the phenyl group attached to the triazole ring was making a π-δ interaction with Leu607. This work reveals the possibility of a synthetic approach of compounds in relation to lipoxygenase inhibition as potential lead compounds in drug discovery.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5326-87-4