Welcome to LookChem.com Sign In|Join Free

CAS

  • or

54773-18-1

Post Buying Request

54773-18-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

54773-18-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 54773-18-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,4,7,7 and 3 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 54773-18:
(7*5)+(6*4)+(5*7)+(4*7)+(3*3)+(2*1)+(1*8)=141
141 % 10 = 1
So 54773-18-1 is a valid CAS Registry Number.

54773-18-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (E)-2-(phenyldiazenyl)pyridine

1.2 Other means of identification

Product number -
Other names 2-phenylazopyridine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:54773-18-1 SDS

54773-18-1Relevant articles and documents

Hydrogen peroxide based oxidation of hydrazines using HBr catalyst

Du, Wanting,Ma, Zichao,Shao, Liming,Wang, Jian

, (2021/11/18)

Azo compounds (RN = NR′) are an important class of organic molecules that find wide application in organic synthesis. Herein, we report an efficient, practical and metal-free oxidation of hydrazines (RNH-NHR’) to azo compounds using 5 mol% HBr and hydrogen peroxide as terminal oxidant. This new method has been demonstrated by 40 examples with excellent yields. In addition, we showcased two examples of the one-pot sequential reactions involving our hydrazine oxidation/hydrolysis/Heck reaction or Cu-catalyzed N-arylation with aryl boronic acid. The distinct advantages of this protocol include metal-free catalysis, waste prevention, and easy operation.

Acid-catalysed aryl hydroxylation of phenylazopyridines: Reaction intermediates, kinetics and mechanism

Cheon, Kap-Soo,Cox, Robin A.,Keum, Sam-Rok,Buncel, Erwin

, p. 1231 - 1239 (2007/10/03)

A kinetic and product analysis study of the reactions of the three isomeric phenylazopyridines (PAPys) in aqueous sulfuric acid media (30-97 wt% H2SO4) is reported. The final products obtained from the reaction of 4-(phenylazo)pyridine (4-PAPy) are the hydroxylated product 4-(4-hydroxyphenylazo)pyridine, the reduction products 4-aminophenol and 4-aminopyridine, and a small amount of a dimerized product. 3-(Phenylazo)pyridine is unreactive, but 2-(phenylazo)pyridine gives the equivalent 2-(4-hydroxyphenylazo)pyridine, 4-aminophenol and 2-aminopyridine products. This product pattern, an oxidized azo-compound and two reduced amines, is similar to that found in the disproportionation of di-p-substituted hydrazinobenzenes observed in benzidine rearrangement studies. Consequently it has been proposed that the corresponding [N′-(4-hydroxyphenylhydrazino)]pyridines were formed as reaction intermediates in the present system; this is confirmed by showing that [N′-4-(4-hydroxyphenylhydrazino)-pyridine synthesized independently gave the same products as 4-PAPy under the same conditions. The kinetic study shows that the 4-isomer reacted faster than the 2-isomer at all the acid concentrations investigated (the 3-isomer being inert). Rate maxima are observed, at ~72 wt% H2SO4 for 4-PAPy and ~86 wt% H2SO4 for 2-PAPy. To facilitate the kinetic analysis, values of pKBH22+ for the protonation of the substrates and the possible hydroxy products at the azo-group were determined, using the excess acidity method; the first protonation occurs on the pyridine nitrogen in the pH region. An excess acidity analysis of the observed pseudo-first-order rate constants as a function of acidity indicate an A2 mechanism, with the diprotonated substrate and either one HSO4- ion or one H2O molecule in the activated complex. The proposed mechanism thus involves nucleophilic attack of HSO4- or H2O at an aryl carbon of the diprotonated substrate in the slow step, resulting in an intermediate hydrazo species which gives the observed products in a subsequent fast step (cf. benzidine rearrangement).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 54773-18-1