Welcome to LookChem.com Sign In|Join Free

CAS

  • or

55755-17-4

Post Buying Request

55755-17-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

55755-17-4 Usage

Chemical Properties

Clear colorless liquid

Check Digit Verification of cas no

The CAS Registry Mumber 55755-17-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,5,7,5 and 5 respectively; the second part has 2 digits, 1 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 55755-17:
(7*5)+(6*5)+(5*7)+(4*5)+(3*5)+(2*1)+(1*7)=144
144 % 10 = 4
So 55755-17-4 is a valid CAS Registry Number.
InChI:InChI=1/C9H13N/c1-8-3-2-4-9(7-8)5-6-10/h2-4,7H,5-6,10H2,1H3/p+1

55755-17-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-Methylphenethylamine

1.2 Other means of identification

Product number -
Other names 5-methyl-phenethyl-amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:55755-17-4 SDS

55755-17-4Relevant articles and documents

Method for preparing primary amine by catalytically reducing nitrile compounds through nano-porous palladium catalyst

-

Paragraph 0093-0096, (2021/05/29)

The invention belongs to the technical field of heterogeneous catalysis, and provides a method for preparing primary amine by catalytically reducing nitrile compounds with a nano-porous palladium catalyst. According to the invention, aromatic and aliphatic nitrile compounds are adopted as raw materials, nano-porous palladium is adopted as a catalyst, ammonia borane is adopted as a hydrogen source, no additional additive is added, and selective hydrogenation is performed to prepare the corresponding primary amine. The method provided by the invention has the beneficial effects of mild reaction conditions, no additive, environmental protection, no need of hydrogen, simple operation, stable hydrogen source, safety, harmlessness, high conversion rate, high selectivity and good catalyst stability, and makes industrialization possible.

Biocatalytic Formal Anti-Markovnikov Hydroamination and Hydration of Aryl Alkenes

Wu, Shuke,Liu, Ji,Li, Zhi

, p. 5225 - 5233 (2017/08/17)

Biocatalytic anti-Markovnikov alkene hydroamination and hydration were achieved based on two concepts involving enzyme cascades: epoxidation-isomerization-amination for hydroamination and epoxidation-isomerization-reduction for hydration. An Escherichia coli strain coexpressing styrene monooxygenase (SMO), styrene oxide isomerase (SOI), ω-transaminase (CvTA), and alanine dehydrogenase (AlaDH) catalyzed the hydroamination of 12 aryl alkenes to give the corresponding valuable terminal amines in high conversion (many ≥86%) and exclusive anti-Markovnikov selectivity (>99:1). Another E. coli strain coexpressing SMO, SOI, and phenylacetaldehyde reductase (PAR) catalyzed the hydration of 12 aryl alkenes to the corresponding useful terminal alcohols in high conversion (many ≥80%) and very high anti-Markovnikov selectivity (>99:1). Importantly, SOI was discovered for stereoselective isomerization of a chiral epoxide to a chiral aldehyde, providing some insights on enzymatic epoxide rearrangement. Harnessing this stereoselective rearrangement, highly enantioselective anti-Markovnikov hydroamination and hydration were demonstrated to convert α-methylstyrene to the corresponding (S)-amine and (S)-alcohol in 84-81% conversion with 97-92% ee, respectively. The biocatalytic anti-Markovnikov hydroamination and hydration of alkenes, utilizing cheap and nontoxic chemicals (O2, NH3, and glucose) and cells, provide an environmentally friendly, highly selective, and high-yielding synthesis of terminal amines and alcohols.

Design and synthesis of novel androgen receptor antagonists via molecular modeling

Zhao, Chao,Choi, You Hee,Khadka, Daulat Bikram,Jin, Yifeng,Lee, Kwang-Youl,Cho, Won-Jea

, p. 789 - 801 (2016/05/24)

Several androgen receptor (AR) antagonists are clinically prescribed to treat prostate cancer. Unfortunately, many patients become resistant to the existing AR antagonists. To overcome this, a novel AR antagonist candidate called DIMN was discovered by our research group in 2013. In order to develop compounds with improved potency, we designed novel DIMN derivatives based on a docking study and substituted carbons with heteroatom moieties. Encouraging in vitro results for compounds 1b, 1c, 1e, 3c, and 4c proved that the new design was successful. Among the newly synthesized compounds, 1e exhibited the strongest inhibitory effect on LNCaP cell growth (IC50= 0.35 μM) and also acted as a competitive AR antagonist with selectivity over the estrogen receptor (ER) and the glucocorticoid receptor (GR). A docking study of compound 1e fully supported these biological results. Compound 1e is considered to be a novel, potent and AR-specific antagonist for treating prostate cancer. Thus, our study successfully applied molecular modeling and bioisosteric replacement for hit optimization. The methods here provide a guide for future development of drug candidates through structure-based drug discovery and chemical modifications.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 55755-17-4