Welcome to LookChem.com Sign In|Join Free

CAS

  • or

61259-29-8

Post Buying Request

61259-29-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

61259-29-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 61259-29-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,1,2,5 and 9 respectively; the second part has 2 digits, 2 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 61259-29:
(7*6)+(6*1)+(5*2)+(4*5)+(3*9)+(2*2)+(1*9)=118
118 % 10 = 8
So 61259-29-8 is a valid CAS Registry Number.
InChI:InChI=1/C14H18O/c15-14(13-9-5-2-6-10-13)11-12-7-3-1-4-8-12/h1,3-4,7-8,13H,2,5-6,9-11H2

61259-29-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-cyclohexyl-2-phenylethanone

1.2 Other means of identification

Product number -
Other names benzyl cyclohexyl ketone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:61259-29-8 SDS

61259-29-8Relevant articles and documents

Nickel-Mediated Photoreductive Cross Coupling of Carboxylic Acid Derivatives for Ketone Synthesis**

Brauer, Jan,Quraishi, Elisabeth,Kammer, Lisa Marie,Opatz, Till

, p. 18168 - 18174 (2021/11/30)

A simple visible light photochemical, nickel-catalyzed synthesis of ketones from carboxylic acid-derived precursors is presented. Hantzsch ester (HE) functions as a cheap, green and strong photoreductant to facilitate radical generation and also engages in the Ni-catalytic cycle to restore the reactive species. With this dual role, HE allows for the coupling of a large variety of radicals (1°,2°, benzylic, α-oxy & α-amino) with aroyl and alkanoyl moieties, a new feature in reactions of this type. With both precursors deriving from abundant carboxylic acids, this protocol is a welcome addition to the organic chemistry toolbox. The reaction proceeds under mild conditions without the need for toxic metal reagents or bases and shows a wide scope, including pharmaceuticals and complex molecular architectures.

Ketone Synthesis from Benzyldiboronates and Esters: Leveraging α-Boryl Carbanions for Carbon-Carbon Bond Formation

Lee, Boran,Chirik, Paul J.

supporting information, p. 2429 - 2437 (2020/03/03)

An alkoxide-promoted method for the synthesis of ketones from readily available esters and benzyldiboronates is described. The synthetic method is compatible with a host of sterically differentiated alkyl groups, alkenes, acidic protons α to carbonyl groups, tertiary amides, and aryl rings having common organic functional groups. With esters bearing α-stereocenters, high enantiomeric excess was maintained during ketone formation, establishing minimal competing racemization by deprotonation. Monitoring the reaction between benzyldiboronate and LiOtBu in THF at 23 °C allowed for the identification of products arising from deborylation to form an α-boryl carbanion, deprotonation, and alkoxide addition to form an "-ate" complex. Addition of 4-trifluoromethylbenzoate to this mixture established the α-boryl carbanion as the intermediate responsible for C-C bond formation and ultimately ketone synthesis. Elucidation of the role of this intermediate leveraged additional bond-forming chemistry and enabled the one-pot synthesis of ketones with α-halogen atoms and quaternary centers with four-different carbon substituents.

Combined Photoredox and Carbene Catalysis for the Synthesis of Ketones from Carboxylic Acids

Betori, Rick C.,Davies, Anna V.,Fitzpatrick, Keegan P.,Scheidt, Karl A.

supporting information, p. 9143 - 9148 (2020/03/30)

As a key element in the construction of complex organic scaffolds, the formation of C?C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single-electron chemistry have enabled new methods for the formation of various C?C bonds. Disclosed herein is the development of a novel single-electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N-heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late-stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 61259-29-8