Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6401-87-2

Post Buying Request

6401-87-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6401-87-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6401-87-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,4,0 and 1 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 6401-87:
(6*6)+(5*4)+(4*0)+(3*1)+(2*8)+(1*7)=82
82 % 10 = 2
So 6401-87-2 is a valid CAS Registry Number.

6401-87-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name Propargyl radical

1.2 Other means of identification

Product number -
Other names propynyl radical

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6401-87-2 SDS

6401-87-2Relevant articles and documents

Decomposition of Picolyl Radicals at High Temperature: A Mass Selective Threshold Photoelectron Spectroscopy Study

Reusch, Engelbert,Holzmeier, Fabian,Gerlach, Marius,Fischer, Ingo,Hemberger, Patrick

supporting information, p. 16652 - 16659 (2019/12/24)

The reaction products of the picolyl radicals at high temperature were characterized by mass-selective threshold photoelectron spectroscopy in the gas phase. Aminomethylpyridines were pyrolyzed to initially produce picolyl radicals (m/z=92). At higher temperatures further thermal reaction products are generated in the pyrolysis reactor. All compounds were identified by mass-selected threshold photoelectron spectroscopy and several hitherto unexplored reactive molecules were characterized. The mechanism for several dissociation pathways was outlined in computations. The spectrum of m/z=91, resulting from hydrogen loss of picolyl, shows four isomers, two ethynyl pyrroles with adiabatic ionization energies (IEad) of 7.99 eV (2-ethynyl-1H-pyrrole) and 8.12 eV (3-ethynyl-1H-pyrrole), and two cyclopentadiene carbonitriles with IE′s of 9.14 eV (cyclopenta-1,3-diene-1-carbonitrile) and 9.25 eV (cyclopenta-1,4-diene-1-carbonitrile). A second consecutive hydrogen loss forms the cyanocyclopentadienyl radical with IE′s of 9.07 eV (T0) and 9.21 eV (S1). This compound dissociates further to acetylene and the cyanopropynyl radical (IE=9.35 eV). Furthermore, the cyclopentadienyl radical, penta-1,3-diyne, cyclopentadiene and propargyl were identified in the spectra. Computations indicate that dissociation of picolyl proceeds initially via a resonance-stabilized seven-membered ring.

Homolytic dissociation of 1-substituted cyclohexa-2,5-diene-1-carboxylic acids: An EPR spectroscopic study of chain propagation

Jackson, Leon V.,Walton, John C.

, p. 1758 - 1764 (2007/10/03)

Hydrogen abstraction from 1-substituted cyclohexa-2,5-diene-1-carboxylic acids containing linear, branched and cyclic alkyl substituents, as well as allyl, propargyl (prop-2-ynyl), cyanomethyl and benzyl substituents, has been studied by EPR spectroscopy. For each carboxylic acid, EPR spectra of the corresponding cyclohexadienyl radicals were observed at lower temperatures, followed by spectra due to ejected carbon-centred radicals at higher temperatures. Rate constants, for release of the carbon-centred radicals from the cyclohexadienyl radicals, were determined from radical concentration measurements for the above range of substituents. The rate of cyclohexadienyl radical dissociation increased with branching in the 1-alkyl substituent and with electron delocalisation in the ejected carbon-centred radical; 3,5-and 2,6-dimethyl-substitution of the cyclohexadienyl ring led to reductions in the dissociation rate constants. Rate data for abstraction of bisallylic hydrogens from the cyclohexadienyl acids were also obtained for ethyl, n-propyl and isopropyl radicals. These results indicated a sharp drop in the rate of hydrogen abstraction as the degree of branching in the attacking radical increased. Small decreases in the hydrogen abstraction rate constants were observed for cyclohexadienes containing CO2R substituents.

A combined crossed beam and ab initio investigation on the reaction of carbon species with C4H6 isomers. I. The 1,3-butadiene molecule, H2CCHCHCH2(X1A')

Hahndorf, I.,Lee, H. Y.,Mebel, A. M.,Lin, S. H.,Lee, Y. T.,Kaiser, R. I.

, p. 9622 - 9636 (2007/10/03)

The reaction between ground state carbon atoms, C(3Pj), and 1,3-butadiene, H2CCHCHCH2, was studied at three averaged collision energies between 19.3 and. 38.8 kJmol-1 using the crossed molecular beam technique. Our experimental data combined with electronic structure calculations show that the carbon atom adds barrierlessly to the ?-orbital of the butadiene molecule via a loose, reactantlike transition state located at the centrifugal barrier. This process forms vinylcyclopropylidene which rotates in a plane almost perpendicular to the total angular momentum vector J around its C-axis. The initial collision complex undergoes ring opening to a long-lived vinyl-substituted triplet allene molecule. This complex shows three reaction pathways. Two distinct H atom loss channels form 1- and 3-vinylpropargyl radicals, HCCCHC2H3(X2A ) and H2CCCC2H3(X2A ), through tight exit transition states located about 20 kJmol-1 above the products; the branching ratio of 1- versus 3-vinylpropargyl radical is about 8:1. A minor channel of less than 10 percent is the formation of a vinyl, C2H3(X2A'), and propargyl radical C3H3(X2B2). The unambiguous identification of two C5H5 chain isomers under single collision has important implications to combustion processes and interstellar chemistry. Here, in denser media such as fuel flames and in circumstellar shells of carbon stars, the linear structures can undergo a collision-induced ring closure followed by a hydrogen migration to cyclic C5H5 isomers such as the cyclopentadienyl radical-a postulated intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6401-87-2