Welcome to LookChem.com Sign In|Join Free

CAS

  • or

946090-26-2

Post Buying Request

946090-26-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

946090-26-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 946090-26-2 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 9,4,6,0,9 and 0 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 946090-26:
(8*9)+(7*4)+(6*6)+(5*0)+(4*9)+(3*0)+(2*2)+(1*6)=182
182 % 10 = 2
So 946090-26-2 is a valid CAS Registry Number.

946090-26-2Relevant articles and documents

Cleavage of carbon-carbon bonds of diphenylacetylene and its derivatives via photolysis of Pt complexes: Tuning the C-C bond formation energy toward selective C-C bond activation

Gunay, Ahmet,Jones, William D.

, p. 8729 - 8735 (2008/02/13)

Carbon-carbon bond activation of diphenylacetylene and several substituted derivatives has been achieved via photolysis and studied. Pt0- acetylene complexes with η2-coordination of the alkyne, along with the corresponding PtII C-C activated photolysis products, have been synthesized and characterized, including X-ray crystal structural analysis. While the C-C cleavage reaction occurs readily under photochemical conditions, thermal activation of the C-C bonds or formation of PtII complexes was not observed. However, the reverse reaction, C-C reductive coupling (Pt II→Pt0), did occur under thermal conditions, allowing the determination of the energy barriers for C-C bond formation from the different PtII complexes. For the reaction (dtbpe)Pt(-Ph)(- C≡CPh) (2) → (dtbpe)Pt(η2-PhC≡CPh) (1), ΔG? was 32.03-(3) kcal/mol. In comparison, the energy barrier for the C-C bond formation in an electron-deficient system, that is, (dtbpe)Pt(C6F5)(C≡CC6F5) (6) → (dtbpe)Pt(η2-bis(pentafluorophenyl)acetylene) (5), was found to be 47.30 kcal/mol. The energy barrier for C-C bond formation was able to be tuned by electronically modifying the substrate with electron-withdrawing or electron-donating groups. Upon cleavage of the C-C bond in (dtbpe)Pt(η2-(p-fluorophenyl-p-tolylacetylene) (9), both (dtbpe)Pt(p-fluorophenyl)(p-tolylacetylide) (10) and (dtbpe)Pt(p-tolyl)(p- fluorophenylacetylide) (11) were obtained. Kinetic studies of the reverse reaction confirmed that 10 was more stable toward the reductive coupling [the term "reductive coupling" is defined as the formation of (dtbpe)Pt(η2-acetylene) complex from the PtII complex] than 11 by 1.22 kcal/mol, under the assumption that the transition-state energies are the same for the two pathways. The product ratio for 10 and 11 was 55:45, showing that the electron-deficient C-C bond is only slightly preferentially cleaved.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 946090-26-2