Welcome to LookChem.com Sign In|Join Free

CAS

  • or

10342-47-9

Post Buying Request

10342-47-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

10342-47-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 10342-47-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,0,3,4 and 2 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 10342-47:
(7*1)+(6*0)+(5*3)+(4*4)+(3*2)+(2*4)+(1*7)=59
59 % 10 = 9
So 10342-47-9 is a valid CAS Registry Number.

10342-47-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name HCl?H-Val-Phe-OMe

1.2 Other means of identification

Product number -
Other names (S)-2-((S)-2-Amino-3-methyl-butyrylamino)-3-phenyl-propionic acid methyl ester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:10342-47-9 SDS

10342-47-9Relevant articles and documents

Site-Selective Acylation of Pyranosides with Oligopeptide Catalysts

Seitz, Alexander,Wende, Raffael C.,Roesner, Emily,Niedek, Dominik,Topp, Christopher,Colgan, Avene C.,McGarrigle, Eoghan M.,Schreiner, Peter R.

, p. 3907 - 3922 (2021)

Herein, we report the oligopeptide-catalyzed site-selective acylation of partially protected monosaccharides. We identified catalysts that invert site-selectivity compared to N-methylimidazole, which was used to determine the intrinsic reactivity, for 4,6

Design, synthesis and biological evaluation of novel L-isoserine tripeptide derivatives as aminopeptidase N inhibitors

Pan, Huili,Yang, Kanghui,Zhang, Jian,Xu, Yingying,Jiang, Yuqi,Yuan, Yumei,Zhang, Xiaopan,Xu, Wenfang

, p. 717 - 726 (2013/07/26)

Aminopeptidase N (APN/CD13) is one of the essential proteins for tumour invasion, angiogenesis and metastasis as it is over-expressed on the surface of different tumour cells. Based on our previous work that L-isoserine dipeptide derivatives were potent APN inhibitors, we designed and synthesized L-isoserine tripeptide derivatives as APN inhibitors. Among these compounds, one compound 16l (IC50=2.51±0.2 M) showed similar inhibitory effect compared with control compound Bestatin (IC50=6.25±0.4 M) and it could be used as novel lead compound for the APN inhibitors development as anticancer agents in the future.

Inhibitors of tripeptidyl peptidase II. 2. Generation of the first novel lead inhibitor of cholecystokinin-8-inactivating peptidase: A strategy for the design of peptidase inhibitors

Ganellin, C. Robin,Bishop, Paul B.,Bambal, Ramesh B.,Chan, Suzanne M. T.,Law, James K.,Marabout, Benoit,Luthra, Pratibha Mehta,Moore, Andrew N. J.,Peschard, Olivier,Bourgeat, Pierre,Rose, Christiane,Vargas, Froylan,Schwartz, Jean-Charles

, p. 664 - 674 (2007/10/03)

The cholecystokinin-8 (CCK-8)-inactivating peptidase is a serine peptidase which has been shown to be a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10). It cleaves the neurotransmitter CCK-8 sulfate at the Met-Gly bond to give Asp-Tyr(SO3H)-Met-OH + Gly-Trp-Met-Asp-Phe-NH2. In seeking a reversible inhibitor of this peptidase, the enzymatic binding subsites were characterized using a fluorimetric assay based on the hydrolysis of the artificial substrate Ala-Ala-Phe-amidomethylcoumarin. A series of di- and tripeptides having various alkyl or aryl side chains was studied to determine the accessible volume for binding and to probe the potential for hydrophobic interactions. From this initial study the tripeptides Ile-Pro-Ile-OH (K(i) = 1 μM) and Ala-Pro-Ala-OH (K(i) = 3 μM) and dipeptide amide Val-Nvl-NHBu (K(i) = 3 μM) emerged as leads. Comparison of these structures led to the synthesis of Val-Pro-NHBu (K(i) = 0.57 μM) which served for later optimization in the design of butabindide, a potent reversible competitive and selective inhibitor of the CCK-8-inactivating peptidase. The strategy for this work is explicitly described since it illustrates a possible general approach for peptidase inhibitor design.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 10342-47-9