Welcome to LookChem.com Sign In|Join Free

CAS

  • or

116660-74-3

Post Buying Request

116660-74-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

116660-74-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 116660-74-3 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,6,6,6 and 0 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 116660-74:
(8*1)+(7*1)+(6*6)+(5*6)+(4*6)+(3*0)+(2*7)+(1*4)=123
123 % 10 = 3
So 116660-74-3 is a valid CAS Registry Number.

116660-74-3Relevant articles and documents

Chiral Bipyridine Ligand with Flexible Molecular Recognition Site: Development and Application to Copper-Catalyzed Asymmetric Borylation of α,β-Unsaturated Ketones

Tsutsumi, Ryosuke,Taguchi, Rika,Yamanaka, Masahiro

, (2021/10/20)

A novel chiral bipyridine ligand bearing a flexible side chain with a molecular recognition site enables precise stereocontrol through the cooperative action of metal center and hydrogen bonds. This new chiral ligand was applied to the copper-catalyzed as

Regio- and enantioselective reduction of diketones: Preparation of enantiomerically pure hydroxy ketones catalysed by Candida parapsilosis ATCC 7330

Mahajabeen, Pula,Chadha, Anju

, p. 1167 - 1173 (2015/10/28)

Enantiomerically enriched hydroxy ketones were prepared by the reduction of the corresponding diketones with excellent enantiomeric excess (98%) and in good yields (up to 75%) using whole cells of Candida parapsilosis ATCC 7330. Cyclic diketones, such as 1,2-cyclohexanedione and 1,4-cyclohexanedione, resulted in hydroxy ketones as products. Cyclohexane-1,3-dione and 5,5-dimethylcyclohexane-1,3-dione gave dimerised products, such as 2,2′-(ethane-1,1-diyl)bis(3-hydroxycyclohex-2-enone) and 2,2′-(ethane-1,1-diyl)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) with acetaldehyde generated in situ from whole cells of Candida parapsilosis ATCC 7330, which is reported here for the first time.

Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water

Kitanosono, Taku,Xu, Pengyu,Kobayashi, Shu

supporting information, p. 179 - 188 (2014/01/06)

We have developed CuII-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported CuI catalysis that required organic solvents, chiral CuII catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β- disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43 200 h-1) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ, δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products were exclusively obtained by using cat. 2 or cat. 3, 1,6-addition products were exclusively produced by using cat. 1. Similar unique reactivities and selectivities were also shown in the reactions of cyclic trienones. Finally, the reaction mechanisms of these unique conjugate-addition reactions in water were investigated and we propose stereochemical models that are supported by X-ray crystallography and MS (ESI) analysis. Although the role of water has not been completely revealed, water is expected to be effective in the activation of a borylcopper(II) intermediate and a protonation event subsequent to the nucleophilic addition step, thereby leading to overwhelmingly high catalytic turnover. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 116660-74-3