Welcome to LookChem.com Sign In|Join Free

CAS

  • or

120173-04-8

Post Buying Request

120173-04-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

120173-04-8 Usage

Chemical structure

A pyrrolidine ring with a 2-methoxybenzoyl group attached to it.

Purity

97%, making it suitable for research and industrial applications.

Physical state

White to off-white solid.

Usage

Commonly used in organic synthesis as a reagent for various reactions.

Applications

Useful in the production of pharmaceuticals and agrochemicals.

Versatility

Can be used as a building block for the synthesis of other complex organic molecules.

Importance

Wide range of applications in organic chemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 120173-04-8 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,0,1,7 and 3 respectively; the second part has 2 digits, 0 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 120173-04:
(8*1)+(7*2)+(6*0)+(5*1)+(4*7)+(3*3)+(2*0)+(1*4)=68
68 % 10 = 8
So 120173-04-8 is a valid CAS Registry Number.

120173-04-8Relevant articles and documents

METHODS OF CONTROLLING CROP PESTS USING AROMATIC AMIDE INSECT REPELLENTS, METHODS OF MAKING AROMATIC AMIDE INSECT REPELLENTS, AND NOVEL AROMATIC AMIDE INSECT REPELLENTS

-

Paragraph 0068-0069, (2022/03/18)

Methods of protecting fruit crops from flying insect pests and of repelling flying insects using aromatic amide compounds are disclosed. The methods apply the compounds to various surfaces, such as the fruit crops, the ground or structures adjacent to the fruit crops, or an object, article, human skin or animal. The compounds have the formula RxC6Hy—C(═O)—N(Cy), where RxC6Hy is a substituted phenyl group, each R group is independently C1-C6 alkyl, substituted C1-C4 alkyl, (substituted) C6-C10 aryl, C1-C4 alkoxy, C6-C10 aryloxy, halogen, nitro, cyano, cyanate, isocyanate, nitroso, C1-C4 alkylthio, phenylthio, (halogen-substituted) C1-C4 alkylsulfonyl, phenylsulfonyl, tolylsulfonyl, amino, mono- or di-C1-C4 alkylamino, diphenylamino, di-C1-C4 alkylamido, formyl, C2-C7 acyl, or C1-C6 alkoxycarbonyl; x is an integer of 1 to 5; x+y=5; Cy is a C2-C8 (substituted) alkadiyl, a C4-C6 (substituted) alkenediyl, or a (substituted) diyl of the formula —(CH2CH2)—O—(CH2CH2)—, —(CH2CH2)—NR′—(CH2CH2)— or —(CH2CH2)—S—(CH2CH2)— that, along with the amide N atom, forms a non-aromatic cyclic group; and R′ is C1-C6 alkyl, substituted C1-C4 alkyl, (substituted) C6-C10 aryl, or (substituted) benzyl.

Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites

Bian, Fengxia,Cheng, Hongmei,Jiang, Heyan,Sun, Bin,Tan, Jiangwei,Zang, Cuicui

, p. 279 - 287 (2021/08/21)

Heterogeneous photocatalytic organic synthesis is fascinating because of the utilization of ubiquitous solar light for chemical transformations. Here, three Fe-MOFs with different Fe-O clusters, Lewis acid sites and morphologies were synthesized through coordination structure engineering. Pd/Fe-MOFs nanocomposites were used to challenge the amide bond green synthesis with visible light. Pd/MIL-101(Fe) exhibited the best photocatalytic performance due to the easily excited Fe3-μ3-oxo clusters for light absorption, the efficient photogenerated carriers separation and migration, the large amount of Lewis acid sites based aldehydes and amines condensation promotion and the efficient O2 reduction to superoxide radicals over photogenerated electron-rich Pd NPs. Various aldehydes, alcohols and toluenes could be transformed to amide compounds with amines over Pd/MIL-101(Fe) with just oxygen or air as the green oxidant and water as the by-product. One-pot C–C cross-coupling and photo-redox C–N coupling cascade reactions could also be achieved over Pd/MIL-101(Fe). This work shed light on the efficient and sustainable amide bonds synthesis.

Direct allylation of aromatic and α,β-unsaturated carboxamides under ruthenium catalysis

Kim, Mirim,Sharma, Satyasheel,Mishra, Neeraj Kumar,Han, Sangil,Park, Jihye,Kim, Minyoung,Shin, Youngmi,Kwak, Jong Hwan,Han, Sang Hoon,Kim, In Su

, p. 11303 - 11306 (2014/11/07)

The ruthenium-catalyzed oxidative allylation of aromatic and α,β-unsaturated carboxamides with allylic carbonates is described. These transformations proceed readily with complete linear γ-selectivity of substituted allylic carbonates. the Partner Organisations 2014.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 120173-04-8