Welcome to LookChem.com Sign In|Join Free

CAS

  • or

14062-30-7

Post Buying Request

14062-30-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

14062-30-7 Usage

Synthesis Reference(s)

Journal of Medicinal Chemistry, 43, p. 1508, 2000 DOI: 10.1021/jm990448e

Check Digit Verification of cas no

The CAS Registry Mumber 14062-30-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,4,0,6 and 2 respectively; the second part has 2 digits, 3 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 14062-30:
(7*1)+(6*4)+(5*0)+(4*6)+(3*2)+(2*3)+(1*0)=67
67 % 10 = 7
So 14062-30-7 is a valid CAS Registry Number.
InChI:InChI=1/C10H11BrO2/c1-2-13-10(12)7-8-4-3-5-9(11)6-8/h3-6H,2,7H2,1H3

14062-30-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name Ethyl 3-Bromophenylacetate

1.2 Other means of identification

Product number -
Other names ethyl 2-(3-bromophenyl)acetate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:14062-30-7 SDS

14062-30-7Relevant articles and documents

Enantioselective Desymmetrization of 2-Aryl-1,3-propanediols by Direct O-Alkylation with a Rationally Designed Chiral Hemiboronic Acid Catalyst That Mitigates Substrate Conformational Poisoning

Estrada, Carl D.,Ang, Hwee Ting,Vetter, Kim-Marie,Ponich, Ashley A.,Hall, Dennis G.

supporting information, (2021/04/07)

Enantioselective desymmetrization by direct monofunctionalization of prochiral diols is a powerful strategy to prepare valuable synthetic intermediates in high optical purity. Boron acids can activate diols toward nucleophilic additions; however, the design of stable chiral catalysts remains a challenge and highlights the need to identify new chemotypes for this purpose. Herein, the discovery and optimization of a bench-stable chiral 9-hydroxy-9,10-boroxarophenanthrene catalyst is described and applied in the highly enantioselective desymmetrization of 2-aryl-1,3-diols using benzylic electrophiles under operationally simple, ambient conditions. Nucleophilic activation and discrimination of the enantiotopic hydroxy groups on the diol substrate occurs via a defined chairlike six-membered anionic complex with the hemiboronic heterocycle. The optimal binaphthyl-based catalyst 1g features a large aryloxytrityl group to effectively shield one of the two prochiral hydroxy groups on the diol complex, whereas a strategically placed "methyl blocker"on the boroxarophenanthrene unit mitigates the deleterious effect of a competing conformation of the complexed diol that compromised the overall efficiency of the desymmetrization process. This methodology affords monoalkylated products in enantiomeric ratios equal or over 95:5 for a wide range of 1,3-propanediols with various 2-aryl/heteroaryl groups.

Ambient Decarboxylative Arylation of Malonate Half-Esters via Oxidative Catalysis

Moon, Patrick J.,Yin, Shengkang,Lundgren, Rylan J.

supporting information, p. 13826 - 13829 (2016/11/06)

We report decarboxylative carbonyl α-arylation by coupling of arylboron nucleophiles with malonic acid derivatives. This process is enabled by the merger of aerobic oxidative Cu catalysis with decarboxylative enolate interception reminiscent of malonyl-CoA reactivity in polyketide biosynthesis. This method enables the synthesis of monoaryl acetate derivatives containing electrophilic functional groups that are incompatible with existing α-arylation reactivity paradigms. The utility of the reaction is demonstrated in drug intermediate synthesis and late-stage functionalization.

SUBSTITUTED AROMATIC COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS FOR TISSUE SELF-REPAIR AND REGENERATION

-

Paragraph 0094, (2016/06/13)

Described herein are compounds of Formula I, or pharmaceutically acceptable salts thereof, or combinations thereof, as well as uses thereof. Such uses include promoting tissue self-repair or tissue regeneration of an organ, stimulating the generation of tissue growth, modulating (e.g. increasing) the level of a tissue-repair marker, treating physical injury in an organ, tissue, or cell, promoting wound healing as well as anti-aging applications. Corresponding compositions, methods and uses are also described. Formula I wherein A is C5 alkyl, C6 alkyl, C5 alkenyl, C6 alkenyl, C(0)-(CH2)n-CH3 or CH(OH)-(CH2)n-CH3 wherein n is 3 or 4; R1 is H, F of OH; R2 is H, F, OH, C5 alkyl, C6 alkyl, C5 alkenyl, C6 alkenyl, C(0)-(CH2)n-CH3 or CH(OH)-(CH2)n-CH3 wherein n is 3 or 4; R3 is H, F, OH, or CH2Ph; R4 is H, F or OH; Q is 1) (CH2),C(0)OH wherein m is 1 or 2 2) CH(CH3)C(0)OH, 3) C(CH3)2C(0)OH, 4) CH(F)-C(0)OH, 5) CF2-C(0)OH or 6) C(0)-C(0)OH.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 14062-30-7