Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1535-41-7

Post Buying Request

1535-41-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1535-41-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1535-41-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,5,3 and 5 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 1535-41:
(6*1)+(5*5)+(4*3)+(3*5)+(2*4)+(1*1)=67
67 % 10 = 7
So 1535-41-7 is a valid CAS Registry Number.

1535-41-7Relevant articles and documents

Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α-Nitrotoluenes to E-Nitroethenes

Chong, Xiaodan,Liu, Cuibo,Wang, Changhong,Yang, Rong,Zhang, Bin

, p. 22010 - 22016 (2021)

Developing an electrochemical carbon-added reaction with accelerated kinetics to replace the low-value and sluggish oxygen evolution reaction (OER) is markedly significant to pure hydrogen production. Regulating the critical steps to precisely design electrode materials to selectively synthesize targeted compounds is highly desirable. Here, inspired by the surfaced adsorbed SeOx2? promoting OER, NiSe is demonstrated to be an efficient anode enabling α-nitrotoluene electrooxidation to E-nitroethene with up to 99 % E selectivity, 89 % Faradaic efficiency, and the reaction rate of 0.25 mmol cm?2 h?1 via inhibiting side reactions for energy-saving hydrogen generation. The high performance can be associated with its in situ formed NiOOH surface layer and absorbed SeOx2? via Se leaching-oxidation during electrooxidation, and the preferential adsorption of two -NO2 groups of intermediate on NiOOH. A self-coupling of α-carbon radicals and subsequent elimination of a nitrite molecule pathway is proposed. Wide substrate scope, scale-up synthesis of E-nitroethene, and paired productions of E-nitroethene and hydrogen or N-protected aminoarenes over a bifunctional NiSe electrode highlight the promising potential. Gold also displays a similar promoting effect for α-nitrotoluene transformation like SeOx2?, rationalizing the strategy of designing materials to suppress side reactions.

Design, synthesis, and biological activity evaluation of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives as broad-spectrum antifungal agents

Zhao, Liyu,Sun, Yin,Yin, Wenbo,Tian, Linfeng,Sun, Nannan,Zheng, Yang,Zhang, Chu,Zhao, Shizhen,Su, Xin,Zhao, Dongmei,Cheng, Maosheng

, (2021/11/22)

To discover antifungal compounds with broad-spectrum and stable metabolism, a series of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives was designed and synthesized. Compounds A30-A34 exhibited excellent broad-spectrum antifungal activity against Candida albicans with MIC values in the range of 0.03–0.5 μg/mL, and against Cryptococcus neoformans and Aspergillus fumigatus with MIC values in the range of 0.25–2 μg/mL. In addition, compounds A31 and A33 showed high metabolic stability in human liver microsomes in vitro, with the half-life of 80.5 min and 69.4 min, respectively. Moreover, compounds A31 and A33 showed weak or almost no inhibitory effect on the CYP3A4 and CYP2D6. The pharmacokinetic evaluation in SD rats showed that compound A31 had suitable pharmacokinetic properties and was worthy of further study.

Improving the metabolic stability of antifungal compounds based on a scaffold hopping strategy: Design, synthesis, and structure-activity relationship studies of dihydrooxazole derivatives

Cheng, Maosheng,Su, Xin,Sun, Nannan,Sun, Yin,Tian, Linfeng,Yin, Wenbo,Zhang, Chu,Zhao, Dongmei,Zhao, Liyu,Zhao, Shizhen,Zheng, Yang

, (2021/08/07)

L-amino alcohol derivatives exhibited high antifungal activity, but the metabolic stability of human liver microsomes in vitro was poor, and the half-life of optimal compound 5 was less than 5 min. To improve the metabolic properties of the compounds, the scaffold hopping strategy was adopted and a series of antifungal compounds with a dihydrooxazole scaffold was designed and synthesized. Compounds A33-A38 substituted with 4-phenyl group on dihydrooxazole ring exhibited excellent antifungal activities against C. albicans, C. tropicalis and C. krusei, with MIC values in the range of 0.03–0.25 μg/mL. In addition, the metabolic stability of compounds A33 and A34 in human liver microsomes in vitro was improved significantly, with the half-life greater than 145 min and the half-life of 59.1 min, respectively. Moreover, pharmacokinetic studies in SD rats showed that A33 exhibited favourable pharmacokinetic properties, with a bioavailability of 77.69%, and half-life (intravenous administration) of 9.35 h, indicating that A33 is worthy of further study.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1535-41-7