Welcome to LookChem.com Sign In|Join Free

CAS

  • or

17916-60-8

Post Buying Request

17916-60-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

17916-60-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 17916-60-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,7,9,1 and 6 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 17916-60:
(7*1)+(6*7)+(5*9)+(4*1)+(3*6)+(2*6)+(1*0)=128
128 % 10 = 8
So 17916-60-8 is a valid CAS Registry Number.

17916-60-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-BROMOCINNAMIC ACID

1.2 Other means of identification

Product number -
Other names trans-4-bromocinnamic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:17916-60-8 SDS

17916-60-8Relevant articles and documents

Design, Synthesis, and Anticancer Activity of Cinnamoylated Barbituric Acid Derivatives

Li, Peng-Xiao,Liu, Guo-Yun,Liu, Ren-Min,Liu, Yue,Mu, Wen-Wen,Sun, Ya-Lei,Yang, Jie

, (2022/01/13)

This work deals with the design and synthesis of 18 barbituric acid derivatives bearing 1,3-dimethylbarbituric acid and cinnamic acid scaffolds to find potent anticancer agents. The target molecules were obtained through Knoevenagel condensation and acylation reaction. The cytotoxicity was assessed by the MTT assay. Flowcytometry was performed to determine the cell cycle arrest, apoptosis, ROS levels and the loss of MMP. The ratios of GSH/GSSG and the MDA levels were determined by using UV spectrophotometry. The results revealed that introducing substitutions (CF3, OCF3, F) on the meta- of the benzyl ring of barbituric acid derivatives led to a considerable increase in the antiproliferative activities compared with that of corresponding ortho- and para-substituted barbituric acid derivatives. Mechanism investigation implied that the 1c could increase the ROS and MDA level, decrease the ratio of GSH/GSSG and MMP, and lead to cell cycle arrest. Further research is needed for structural optimization to enhance hydrophilicity, thereby improve the biological activity of these compounds.

Crystallization-Based Synthetic Route to Antimalarial Agent BRD5018: Diazocene Ring Formation via a Staudinger-aza-Wittig Reaction on an Azetidine-Ribose Template

Balla, Venkata Sasidhar,Bathula, Srikanth,Fang, Francis G.,Girish, Dixit,Gotoda, Masaharu,Gusovsky, Fabian,Kalla, Vijay,Khile, Anil Shahaji,Melillo, Bruno,Mitasev, Branko,Rayaprolu, Pavan Kumar,Schreiber, Stuart L.,Sugandham, Srinivasa Rao,Talabhakthula, Ravi Kumar,Terli, Chiranjeevi,Vaddi, Anand,Vikram, Venugopalarao,Yang, Jiong

, (2021/10/01)

The development of an entirely crystallization-based synthetic route to the antimalarial BRD5018 is described, which assembles a structurally complex bicyclic azetidine scaffold adorned with five stereogenic centers without the need for any chromatographic separations. A diastereoselective glycine ester Claisen rearrangement, diastereomeric salt resolution, and diastereoselective iodo-lactonization are utilized to provide an efficient access to three contiguous stereogenic centers on an acyclic template with the desired relative and absolute configurations. A tandem aziridine ring-opening/azetidine ring-closure on the derived 2-amino-1,4-diol template was developed to efficiently establish the all-cis trisubstituted azetidine scaffold with the proper ancillary functionality for end-game maneuvers. d-Ribose-2,3-acetonide provided a conveniently differentiated vicinal syn-diol suitable for the planned reductive amination/periodate cleavage/Staudinger-aza-Wittig sequence to form the eight-membered diazocene ring. An early quantitative installation of the diaryl acetylene moiety via a Sonogashira coupling on an electronically matched methyl 4-bromocinnamate circumvented a low-yielding, late-stage reaction in the first-generation synthesis. Multiple crystalline intermediates enabled the complete removal of chromatography from the synthesis resulting in a substantially reduced cost and waste generation with enhanced throughput and quality control.

Amino Group Functionalized Hf-Based Metal-Organic Framework for Knoevenagel-Doebner Condensation

Das, Aniruddha,Anbu, Nagaraj,Gogoi, Chiranjib,Dhakshinamoorthy, Amarajothi,Biswas, Shyam

, p. 3396 - 3403 (2021/08/20)

A Hf(IV) metal-organic framework (MOF) with di-amino functionalized linker was obtained as a crystalline solid with UiO-67 topology under solvothermal reaction conditions. The guest free form of Hf(IV) MOF (1′) was efficiently employed as a heterogeneous catalyst to synthesize cinnamic acid derivatives via Knoevenagel-Doebner reaction for the first time. The catalyst (1′) was efficiently active to directly achieve cinnamic acid from benzaldehyde and malonic acid. The solid retained its activity up to 6th cycle with no decay in its activity. The noticeable advantages of the catalyst are its milder reaction conditions, high yield, high stability, recyclable nature towards catalysis and wide substrate scope as well as shape-selective behaviour. The possible mechanism of the reaction was also studied thoroughly with suitable control experiments.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 17916-60-8