Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1798-60-3

Post Buying Request

1798-60-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1798-60-3 Usage

Description

(R)-1-hydroxy-1-phenylacetone, also known as (R)-1-Hydroxy-1-phenylpropanone, is an organic compound that serves as a crucial intermediate in the synthesis of various pharmaceuticals and has demonstrated potential as a reagent in the preparation of chiral (amino)alkanol derivatives. It is characterized by its unique structure and reactivity, which makes it valuable in the development of new drugs and chemical compounds.

Uses

Used in Pharmaceutical Synthesis:
(R)-1-hydroxy-1-phenylacetone is used as an intermediate in the synthesis of Pseudoephedrine and Ephedrine, which are important pharmaceutical compounds with various medical applications, such as treating nasal congestion and attention deficit hyperactivity disorder (ADHD).
Used in Antibacterial and Antifungal Applications:
(R)-1-hydroxy-1-phenylacetone is used as a reagent in the preparation of chiral (amino)alkanol derivatives, which are then evaluated for their activity as antibacterial and antifungal agents. This application highlights its potential in the development of new drugs to combat bacterial and fungal infections.

Check Digit Verification of cas no

The CAS Registry Mumber 1798-60-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,7,9 and 8 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 1798-60:
(6*1)+(5*7)+(4*9)+(3*8)+(2*6)+(1*0)=113
113 % 10 = 3
So 1798-60-3 is a valid CAS Registry Number.
InChI:InChI=1/C9H10O2/c1-7(10)9(11)8-5-3-2-4-6-8/h2-6,9,11H,1H3/t9-/m0/s1

1798-60-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name (R)-phenylacetylcarbinol

1.2 Other means of identification

Product number -
Other names 2-PROPANONE,1-HYDROXY-1-PHENYL-, (1R)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1798-60-3 SDS

1798-60-3Relevant articles and documents

-

Freudenberg,Schoeffel,Braun

, p. 234 (1932)

-

Enantioselective hydrogenation of 1-phenyl-1,2-propanodione on cinchonidine-modified Rh/MCM-41 catalysts

Torres, Cecilia C.,Campos, Cristian H.,Fierro,Reyes, Patricio,Ruiz, Doris

, p. 321 - 328 (2014)

Enantioselective hydrogenation of 1-phenyl-1,2-propanodione (PPD) on Rh/MCM-41 catalysts was studied. The catalysts were prepared using Rh(acac) 3 as a metal precursor and metal loadings that ranged from 0.5 to 1.5 wt%. The samples were characterised by nitrogen adsorption-desorption isotherms at 77 K using ICP-MS, XRD, TEM, XRD and XPS. The reaction was performed at 298 K, and 0.01 mol L-1 of PPD and cinchonidine (CD) was used as chiral modifier. The effect of the modifier concentration on the enantioselectivity (ee) and the conversion level in the hydrogenation reaction shows a relationship between the activity and ee as well as the CD concentration. The volcano-type curve observed for each catalyst suggests competitive adsorption of the modifier and substrate on the catalyst surface. The metal loading influences both the Rh crystallite size and catalytic behaviour. An increase in the Rh levels was accompanied by a parallel increase in both the crystallite size and number of Rh ensembles with a subsequent enhancement in both the conversion level and ee. The catalyst with the highest metal loading was 1.0 wt% Rh/MCM-41, and it displayed the highest ee among the catalysts studied. Additionally, the effects of hydrogen pressure and solvent nature on the catalytic activity were also studied. Moreover, the H2 pressure also influenced the conversion levels with only a minor effect on the ee values. Considering the solvent effects, we observed non-linear ee dependence with an increasing solvent dielectric constant, which showed a decrease in conversion levels in the order cyclohexane > toluene > tetrahydrofurane > dichloromethane.

Enantioselective hydrogenation of 1-phenyl-1,2-propanedione

Toukoniitty, Esa,Maeki-Arvela, Paeivi,Kuzma, Marek,Villela, Alexandre,Kalantar Neyestanaki, Ahmad,Salmi, Tapio,Sjoeholm, Rainer,Leino, Reko,Laine, Ensio,Murzin, Dmitry Yu.

, p. 281 - 291 (2001)

Enantioselective hydrogenation of a diketone, 1-phenyl-1,2-propanedione was studied in a pressurized reactor at 5 bar and at 0-25C in different solvents: ethanol, ethyl acetate, and dichloromethane over platinum catalysts. Both in situ modification (simultaneous addition of the reagent and the modifier) and pre-modification (preadsorption of the modifier prior to the reagent) of the catalyst were investigated using cinchonidine as catalyst modifier. Racemic hydrogenation proceeded with nearly the same rate as the selective hydrogenation in the presence of the catalyst modifier. The kinetic results revealed that the hydrogenation of the carbonyl group attached to the phenyl ring was preferred, the main product being 1-hydroxy-1-phenylpropanone; the ratio between 1-hydroxy-1-phenylpropanone and 2-hydroxy-1-phenylpropanone was about 11. The most effective and enantioselective catalyst was obtained by in situ modification in dichloromethane yielding in 67 mol% of (R)-1-hydroxy-1-phenylpropanone, corresponding to the enantiomeric excess of 64%. The enantiomeric excess was independent of the reactant conversion. In the second hydrogenation step the main product among diols was (1R,2S)-1-phenyl-1,2- propanediol.

Enantioselective hydrogenation of 1-phenyl-1,2-propanodione on Pt/ ZrO 2 catalysts

Urbina, Claudia,Pecchi, Gina,Campos, Cristian,Reyes, Patricio

, p. 25 - 30 (2010)

The enantioselective hydrogenation of 1-phenyl-1,2-propanedione at 298K and pressure of 40 bar of H2 over zirconia supported Pt catalysts has been studied. Three different zirconia were prepared: i) ZrO2- P obtained by a precipitation procedure from ZrOCl2 ii) MSZrO 2 obtained by a sol-gel procedure using cetryltrimethylammonium bromide (CTMABR) as surfactant to get a mesostructured solid iii) CNTsZrO 2 obtained after impregnation of carbon nanotubes with ZrO(NO) 3 followed by pyrolisis and calcination. Pt (1wt%) was introduced on the support by impregnation of an aqueous solution of H2PtCl 6. The catalysts were characterized by nitrogen adsorption-desorption isotherms at 77 K, hydrogen chemisorption, XRD and TEM techniques. The reactions were carried out in a stainless steel batch reactor using cyclohexane as solvent and cinchonidine as chiral modifier. The presence of CD in the reaction medium is necessary to induce an enantiomeric excess (ee) of the desired product R-1phenyl-1 hydroxi-2-propanone. In all the studied systems, the relation between the enantioselectivity and the CD concentration added in situ exhibits a bell type curve; indicative of the importance of competitive adsorption between the modifier and the substrate on the catalyst surface. On the other hand, confinement effect led to an important enhancement in the activity in those catalysts supported on mesostructured supports, mainly in the Pt/CNTsZrO2 catalyst.

Whole-Cell Biocatalysis in Seawater: New Halotolerant Yeast Strains for the Regio- and Stereoselectivity Reduction of 1-Phenylpropane-1,2-Dione in Saline-Rich Media

Andreu, Cecilia,del Olmo, Marcellí

, p. 1621 - 1628 (2020)

The application of green chemistry concepts in catalysis has considerably increased in recent years, and the interest in using sustainable solvents in the chemical industry is growing. One of the recent proposals to fall in line with this is to employ seawater as a solvent in biocatalytic processes. This involves selecting halotolerant strains capable of carrying out chemical conversions in the presence of the salt concentrations found in this solution. Recent studies by our group have revealed the interest in using strains belonging to Debaryomyces and Schwanniomyces for catalytic processes run in this medium. In the present work, we select other yeasts based on their halotolerance to widen the scope of this strategy. We consider them for the monoreduction of 1-phenylpropane-1,2-dione, a well-characterized reaction that produces acyloin intermediates of pharmaceutical interest. The results obtained herein indicate that using seawater as a solvent for this reaction is possible. The best ones were obtained for Saccharomyces cerevisiae FY86 and Kluyveromyces marxianus, for which acyloins with different stereochemistry were obtained with good to excellent enantiomeric excess.

Hydrogenation of 1-phenyl-1,2-propanedione over Pt catalysts modified by cinchona alkaloid O-ethers and the kinetic resolution of the 1-hydroxyketones generated

Busygin, Igor,Waerna, Johan,Toukoniitty, Esa,Murzin, Dmitry Yu.,Leino, Reko

, p. 339 - 348 (2008)

Nine cinchona alkaloid O-ethers together with cinchonidine and cinchonine were studied as chiral modifiers in the enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt/Al2O3. The influence of the O-substituent on the reaction rate, selectivity and product distribution was investigated. Apparent rate constants for all hydrogenation steps were calculated using a first-order kinetic approach resulting in a good agreement between the experimentally recorded and predicted concentrations. The experimentally observed structure-selectivity effects indicate that the mechanisms of enantiodifferentiation over the catalyst modified by parent cinchona alkaloids and their ether derivatives differ from each other. Moreover, the modifier structure-selectivity dependence and the solvent effect were different for enantio- and diastereoselection in the 1-phenyl-1,2-propanedione and 1-hydroxyketone hydrogenations. Correlation between the modifier substituent bulkiness and diastereoselectivity of the 1-hydroxyketone hydrogenation was observed. Data on the inversion of enantioselectivity of 1-phenyl-1,2-propanedione hydrogenation, diastereoselectivity and the sense of kinetic resolution of the 1-hydroxyketones were presented. Due to the complexity of the reaction network, several competing mechanistic pathways may be present in a single reaction system.

A new non-cinchona chiral modifier immobilized on Pt/SiO2 catalysts for enantioselective heterogeneous hydrogenation

Campos, Cristian H.,Torres, Cecilia C.,Leyton, Ariel,Belmar, Julio,Mella, Claudio,Osorio-Vargas, Paula,Ruiz, Doris,Fierro, José L.G.,Reyes, Patricio

, p. 76 - 87 (2015)

Pt heterogeneous catalysts were prepared by the covalent immobilization of (4′R,5′S)-4′,5′-dihydro-4′,5′-diphenyl-2-(6-cyanopyridyl)imidazoline (PyIm) as the asymmetric modifier. These novel series of catalysts were studied in the 1-phenyl-1,2-propanodione (PPD) hydrogenation. The effects of the PyIm surface concentration, hydrogen pressure, solvent nature and recycles on the reaction were studied. These modified catalysts represent the first effective immobilized chiral non-Cinchona-type modifier of Pt for the enantioselective hydrogenation. The enantio-differentiation was attributed to the substrate-modifier interactions involving hydrogen bonding between the keto-carbonyl O atom and the NH moiety PyIm. The results confirmed that the variations in the H2 pressure and the solvent affect the activity and the enantioselectivity due to the substrate adsorption on the active sites of the metal. Additionally, this heterogeneous catalyst can be conveniently reused at least five times without loss of its catalytic efficiency, but the enantioselectivity decreased, which may be due to the leaching of the modifier.

A One-Pot Two-Step Enzymatic Pathway for the Synthesis of Enantiomerically Enriched Vicinal Diols

Giovannini, Pier Paolo,Müller, Michel,Presini, Francesco,Baraldi, Serena,Ragno, Daniele,Di Carmine, Graziano,Jacoby, Christian,Bernacchia, Giovanni,Bortolini, Olga

, p. 973 - 978 (2021)

Enantiomerically enriched 1,2-diols are prominent compounds that find numerous applications in organic chemistry. They are privileged building blocks for the synthesis of APIs (Active Pharmaceutical Ingredients), broadly used as chiral ligands in asymmetric catalysis, and efficient auxiliaries employed to control the stereochemical outcome of total synthesis. Among the number of strategies developed for the preparation of these molecules, enzyme mediated reactions have gained a crucial role in the toolbox of organic chemists for their high efficiency and sustainability. Herein we describe a one-pot two-step protocol designed by combining a thiamine diphosphate (ThDP)-dependent lyase and a NADH-dependent reductase. The ThDP-dependent acetoin:dichlorophenolindophenol oxidoreductase (Ao : DCPIP OR) is exploited to produce enantioenriched α-hydroxyketones through the benzoin-type condensation of methylacetoin with either aldehydes or activated ketones. The enantioenriched α-hydroxyketones undergo the selective reduction into the corresponding 1,2-diols in the same reaction mixture due to the addition of NAD+ and of the NADH-dependent acetylacetoin reductase (AAR). Sodium formate was selected as the sacrificial reductive reactant to generate and recycle in situ the precious NADH by formate-dehydrogenase. Unprecedented reported details on the cloning and expression of the AAR are reported as well.

Synthesis with good enantiomeric excess of both enantiomers of α-ketols and acetolactates by two thiamin diphosphate-dependent decarboxylases

Baykal, Ahmet,Chakraborty, Sumit,Dodoo, Afua,Jordan, Frank

, p. 380 - 393 (2006)

In addition to the decarboxylation of 2-oxo acids, thiamin diphosphate (ThDP)-dependent decarboxylases/dehydrogenases can also carry out so-called carboligation reactions, where the central ThDP-bound enamine intermediate reacts with electrophilic substrates. For example, the enzyme yeast pyruvate decarboxylase (YPDC, from Saccharomyces cerevisiae) or the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1) can produce acetoin and acetolactate, resulting from the reaction of the central thiamin diphosphate-bound enamine with acetaldehyde and pyruvate, respectively. Earlier, we had shown that some active center variants indeed prefer such a carboligase pathway to the usual one [Sergienko, Jordan, Biochemistry 40 (2001) 7369-7381; Nemeria et al., J. Biol. Chem. 280 (2005) 21,473-21,482]. Herein is reported detailed analysis of the stereoselectivity for forming the carboligase products acetoin, acetolactate, and phenylacetylcarbinol by the E477Q and D28A YPDC, and the E636A and E636Q PDHc-E1 active-center variants. Both pyruvate and β-hydroxypyruvate were used as substrates and the enantiomeric excess was analyzed by a combination of NMR, circular dichroism and chiral-column gas chromatographic methods. Remarkably, the two enzymes produced a high enantiomeric excess of the opposite enantiomer of both acetoin-derived and acetolactate-derived products, strongly suggesting that the facial selectivity for the electrophile in the carboligation is different in the two enzymes. The different stereoselectivities exhibited by the two enzymes could be utilized in the chiral synthesis of important intermediates.

Silica supported rhodium metal nanoparticles stabilized with (-)-DIOP. Effect of ligand concentration and metal loading on the enantioselective hydrogenation of ketones

Ruiz, Doris,Mella, Claudio,Fierro, Jose L.G.,Reyes, Patricio

, p. 1394 - 1399 (2012)

Supported nanoparticles (NPs) in presence of chiral ligand (L) were synthesized for their use in enantioselective hydrogenation reactions. Catalysts were obtained by chemical reduction from rhodium chloride hydrate, RhCl 3×3H2O, in presence of (-)-DIOP ligand ((4R,5R)-4,5-Bis(diphenylphosphino-methyl)- 2,2-dimethyl-1,3-dioxolane) that allows to control NPs growing and to obtain solids having chiral surfaces. Chirally stabilized rhodium NPs on SiO2 were characterized using techniques such as: TEM, electron diffraction, EDS, nitrogen adsorption-desorption isotherms and XPS. This work includes the study of some variables such as metal loading and ligand concentration and their effect in metal core sizes, catalytic activity and enantioselectivity. Catalysts properties have also been evaluated in the hydrogenation of substrates: acetophenone (AP), 1-phenyl-1,2-propanedione (PPD), 3,4-hexanedione (HD), 2,3-butanedione (BD) and ethyl pyruvate (EP) as reaction test. Ligand plays a fundamental role in the synthesis of NPs and enantioselectivity in hydrogenations reactions. That is, due to it generates metal particle size 5.8 nm compared with unstabilized systems that generate average diameter around 14 nm. Results indicate increased activity in catalytic systems obtained from the stabilization of NPs. Enantioselectivity levels reach values up to 53% due to the chiral ligand is on the catalysts surface.

Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716T butanediol dehydrogenase

Bongaerts, Johannes,Jablonski, Melanie,Kipp, Carina Ronja,Molinnus, Denise,Muschallik, Lukas,Pohl, Martina,Sch?ning, Michael J.,Selmer, Thorsten,Siegert, Petra,Wagner, Torsten

, p. 12206 - 12216 (2020/04/20)

α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716T (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn2+ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.

Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione

Ruiz, Doris,M?ki-Arvela, P?ivi,Aho, Atte,Chiment?o, Ricardo,Claver, Carmen,Godard, Cyril,Fierro, José L.G.,Murzin, Dmitry Yu.

, (2019/08/26)

This work reports the efficient synthesis of enantio-enriched alcohols by asymmetric hydrogenation of 1-phenyl-1,2-propanedione using chiral nanoparticles (NPs) supported on SiO2. The chiral catalysts were synthesized by reducing the [Rh(μ?OCH3)(C8H12)]2 precursor under H2 in the presence of P-chiral ligands as stabilizers and SiO2 as support. Synthesis of catalysts in mild conditions was performed from labile organometallic precursor and chiral ligands provided small and well defined chiral nanoparticles (≤ 3 nm). The catalysts were characterized by XPS, HR-TEM, EDS, XRD and N2 physisorption isotherm. The physical chemical properties of the materials were correlated with the catalytic results obtained in the asymmetric hydrogenation of 1-phenyl-1,2-propanedione. In 1-phenyl-1,2-propanedione hydrogenation the best results using chiral catalysts allowed 98% conversion and enantiomeric excess of 67% to (R)-1-hydroxy-1-phenyl-propan-2-one and 59% for (R)-2-hydroxy-1-phenylpropan-1-one. Catalyst recycling studies revealed that chiral nanoparticles immobilized on SiO2 are stable. These catalysts do not need extra amount of chiral modifier or inducer added in situ and could be reused without loss of enantioselectivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1798-60-3