Welcome to LookChem.com Sign In|Join Free

CAS

  • or

189445-63-4

Post Buying Request

189445-63-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

189445-63-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 189445-63-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,8,9,4,4 and 5 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 189445-63:
(8*1)+(7*8)+(6*9)+(5*4)+(4*4)+(3*5)+(2*6)+(1*3)=184
184 % 10 = 4
So 189445-63-4 is a valid CAS Registry Number.

189445-63-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(4-fluorophenyl)propanal

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:189445-63-4 SDS

189445-63-4Relevant articles and documents

Copper-catalyzed hydroformylation and hydroxymethylation of styrenes

Franke, Robert,Geng, Hui-Qing,Meyer, Tim,Wu, Xiao-Feng

, p. 14937 - 14943 (2021/12/02)

Hydroformylation catalyzed by transition metals is one of the most important homogeneously catalyzed reactions in industrial organic chemistry. Millions of tons of aldehydes and related chemicals are produced by this transformation annually. However, most of the applied procedures use rhodium catalysts. In the procedure described here, a copper-catalyzed hydroformylation of alkenes has been realized. Remarkably, by using a different copper precursor, the aldehydes obtained can be further hydrogenated to give the corresponding alcohols under the same conditions, formally named as hydroxymethylation of alkenes. Under pressure of syngas, various aldehydes and alcohols can be produced from alkenes with copper as the only catalyst, in excellent regioselectivity. Additionally, an all-carbon quaternary center containing ethers and formates can be synthesized as well with the addition of unactivated alkyl halides. A possible reaction pathway is proposed based on our results. This journal is

Insight into decomposition of formic acid to syngas required for Rh-catalyzed hydroformylation of olefins

Liu, Lei,Chen, Xiao-Chao,Yang, Shu-Qing,Yao, Yin-Qing,Lu, Yong,Liu, Ye

, p. 406 - 415 (2020/12/07)

Formic acid (FA) is one kind of important bulk chemicals, which is recognized as a sustainable and eco-friendly energy carrier to transport H2 via dehydrogenation or CO via decarbonylation. Expectantly, FA upon decomposition into H2 and CO could be used as the syngas alternative for hydroformylation. In this paper, the behaviors of FA to release H2 as well as CO following the distinct pathways were carefully investigated for the first time, and then established a new hydroformylation protocol free of syngas. It was found that the atmospheric hydroformylation of olefins with formic acid (FA) as syngas alternative was smoothly fulfilled over Xantphos (L1) modified Rh-catalyst under mild conditions (80 °C, Rh concentration 1 mol %, 14 h), resulting in >90% conversion of the olefins along with the high selectivity to the target aldehydes (>93%). By using FA as syngas source, the side-reaction of olefin-hydrogenation was greatly depressed. The in situ FT-IR and the high-pressure 1H NMR spectroscopic analyses were applied to reveal how FA behaves dually as CO surrogate and hydrogen source over L1-Rh(acac)(CO)2 catalytic system, based on which the deeply insight into the catalytic mechanism of hydroformylation of olefins with FA as syngas alternative was offered.

Binuclear Pd(I)-Pd(I) Catalysis Assisted by Iodide Ligands for Selective Hydroformylation of Alkenes and Alkynes

Zhang, Yang,Torker, Sebastian,Sigrist, Michel,Bregovi?, Nikola,Dydio, Pawe?

supporting information, p. 18251 - 18265 (2020/11/02)

Since its discovery in 1938, hydroformylation has been thoroughly investigated and broadly applied in industry (>107 metric ton yearly). However, the ability to precisely control its regioselectivity with well-established Rh- or Co-catalysts has thus far proven elusive, thereby limiting access to many synthetically valuable aldehydes. Pd-catalysts represent an appealing alternative, yet their use remains sparse due to undesired side-processes. Here, we report a highly selective and exceptionally active catalyst system that is driven by a novel activation strategy and features a unique Pd(I)-Pd(I) mechanism, involving an iodide-assisted binuclear step to release the product. This method enables β-selective hydroformylation of a large range of alkenes and alkynes, including sensitive starting materials. Its utility is demonstrated in the synthesis of antiobesity drug Rimonabant and anti-HIV agent PNU-32945. In a broader context, the new mechanistic understanding enables the development of other carbonylation reactions of high importance to chemical industry.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 189445-63-4