Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2077-50-1

Post Buying Request

2077-50-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2077-50-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 2077-50-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,0,7 and 7 respectively; the second part has 2 digits, 5 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 2077-50:
(6*2)+(5*0)+(4*7)+(3*7)+(2*5)+(1*0)=71
71 % 10 = 1
So 2077-50-1 is a valid CAS Registry Number.

2077-50-1Relevant articles and documents

Electrochemical Aziridination of Internal Alkenes with Primary Amines

Bartolomeu, Aloisio de A.,Dyga, Marco,Goo?en, Lukas J.,Laudadio, Gabriele,No?l, Timothy,O?eka, Maksim,de Bruin, Bas,de Oliveira, Kleber T.,van Leest, Nicolaas P.

, p. 255 - 266 (2021/01/19)

An electrochemical approach to prepare aziridines via an oxidative coupling between alkenes and primary alkyl amines was realized. The reaction is carried out in an electrochemical flow reactor, leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine yielding the corresponding hydroaminated product.Aziridines are useful synthetic building blocks, widely employed for the preparation of various nitrogen-containing derivatives. As the current methods require the use of prefunctionalized amines, the development of a synthetic strategy toward aziridines that can establish the union of alkenes and amines would be of great synthetic value. Herein, we report an electrochemical approach, which realizes this concept via an oxidative coupling between alkenes and primary alkylamines. The reaction is carried out in an electrochemical flow reactor leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine, yielding the corresponding hydroaminated product. Mechanistic investigations and DFT calculations revealed that the alkene is first anodically oxidized and subsequently reacted with the amine coupling partner.The central tenet in modern synthetic methodology is to develop new methods only using widely available organic building blocks. As a direct consequence, new activation strategies are required to cajole the coupling partners to react and, subsequently, forge new and useful chemical bonds. Using electrochemical activation, our methodology enables for the first time the direct coupling between olefins and amines to yield aziridines. Aziridines display interesting pharmacological activity and serve as valuable synthetic intermediates to prepare diverse nitrogen-containing derivatives. Interestingly, the sole byproduct generated in this process is hydrogen, which can be subsequently used to reduce the aziridine into the corresponding hydroaminated product. Hence, this electrochemical methodology can be regarded as green and sustainable from the vantage point of upgrading simple and widely available commodity chemicals.

Cobalt-Catalyzed Z to e Isomerization of Alkenes: An Approach to (E)-β-Substituted Styrenes

Liu, Hongmei,Xu, Man,Cai, Cheng,Chen, Jianhui,Gu, Yugui,Xia, Yuanzhi

supporting information, p. 1193 - 1198 (2020/02/04)

An efficient cobalt-catalyzed Z to E isomerization of β-substituted styrenes using the amido-diphosphine ligand was developed, delivering the (E)-isomers with good functional tolerance and high stereoselectivity. The reaction could be scaled up to gram-scale with a catalyst loading of 0.1 mol %, using a mixture of (Z)- and (E)-alkene as the starting material. Preliminary mechanistic studies indicated that cobalt(I)-hydride and a benzylic-cobalt species were probably involved in the reaction, as supported by experiments and DFT calculations.

Synthesis of Amino-ADT Provides Access to Hydrolytically Stable Amide-Coupled Hydrogen Sulfide Releasing Drug Targets

Hammers, Matthew D.,Singh, Loveprit,Montoya, Leticia A.,Moghaddam, Alan D.,Pluth, Michael D.

supporting information, p. 1349 - 1353 (2016/06/01)

As additional physiological functions of hydrogen sulfide (H2S) are discovered, developing practical methods for exogenous H2S delivery is important. In particular, nonsteroidal anti-inflammatory drugs (NSAIDs) functionalized with H2S-releasing anethole dithiolethione (ADT-OH) through ester bonds are being investigated for their combined anti-inflammatory and antioxidant potential. The chemical robustness of the connection between drug and H2S-delivery components, however, is a key and controllable linkage in these compounds. Because esters are susceptible to hydrolysis, particularly under acidic conditions such as stomach acid in oral drug delivery applications, we report here a simple synthesis of amino-ADT (ADT-NH2) and provide conditions for successful ADT-NH2 derivatization with the drugs naproxen and valproic acid. Using UV-vis spectroscopy and HPLC analysis, we demonstrate that amide-functionalized ADT derivatives are significantly more resistant to hydrolysis than ester-functionalized ADT derivatives.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2077-50-1