Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22710-00-5

Post Buying Request

22710-00-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22710-00-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 22710-00-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,7,1 and 0 respectively; the second part has 2 digits, 0 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 22710-00:
(7*2)+(6*2)+(5*7)+(4*1)+(3*0)+(2*0)+(1*0)=65
65 % 10 = 5
So 22710-00-5 is a valid CAS Registry Number.
InChI:InChI=1/C12H17N/c1-2-3-7-10-13-11-12-8-5-4-6-9-12/h4-6,8-9,11H,2-3,7,10H2,1H3

22710-00-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name benzylidene-pentyl-amine

1.2 Other means of identification

Product number -
Other names Benzaldehyd-n-amylimid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22710-00-5 SDS

22710-00-5Relevant articles and documents

Fe2Mn(μ3-O)(COO)6 Cluster Based Stable MOF for Oxidative Coupling of Amines via Heterometallic Synergy

Wang, Ying-Xia,Wang, Hui-Min,Meng, Pan,Song, Dong-Xia,Qi, Zhikai,Zhang, Xian-Ming

supporting information, p. 2983 - 2989 (2021/08/30)

The direct catalytic oxidative coupling of amines is one of the attracting methods for the synthesis of a variety of pharmaceutical or industrial needed imines. Numerous earth-abundant manganese based salts, oxides, and complexes have been applied in this reaction. However, these compounds suffered from difficult separation, large catalyst loading, complicated reactivation or indeterminate activity. Considering the facts that metal-organic frameworks (MOFs) with crystalline structure, precise composition, and enormous surface area have superior performance in heterogeneous catalytic reactions, herein, we introduced Mn into [Fe3(μ3-O)(CH3COO)6], one of the precursors for the preparation of stable MOFs, and got [Fe2Mn(μ3-O)(CH3COO)6] cluster. After ligand replacement with biphenyl-3,4’,5-tricarboxylic acid (BPTC), heterometallic cluster-based [Fe2Mn(μ3-O)(BPTC)2(DMF)2(H2O)] (1) was obtained. As expected, 1 is stable and able to catalyze the homo- or cross-coupling of amines effectively and selectively with 0.9 mol% catalyst loading at room temperature. Control experiments indicated that the catalytic activity of 1 mainly stems from Mn sites and that Fe synergistically contributes to the stability. Additionally, 1 is recyclable and can be reused easily for at least 8 runs without obvious decrease in catalytic ability. To our knowledge, 1 should be the first heterometallic cluster-based MOF with defined structure suitable for the synthesis of diverse imines from oxidative coupling of amines under mild conditions, which may shed light on the easy preparation of effective heterogeneous catalysts for organic synthesis.

Functional POM-catalyst for selective oxidative dehydrogenative couplings under aerobic conditions

Samaraj, Elavarasan,Balaraman, Ekambaram,Manickam, Sasidharan

, (2021/02/05)

Development of selective and efficient reusable catalytic systems for sustainable chemical production under benign conditions is attractive and received much attention. Herein, we report a rod-shaped octadecyl trimethylammonium functionalized Keggin-type polyoxometalate [PMO12O40] hybrids (OTA-POM) as an efficient heterogeneous catalyst for selective oxidative dehydrogenative couplings under aerobic conditions without any additive or external base. The catalyst recovery and subsequent five successive recyclability studies of hybrid POM confirms the heterogeneous nature of present catalytic system.

Efficient nickel-catalysed: N -alkylation of amines with alcohols

Afanasenko, Anastasiia,Elangovan, Saravanakumar,Stuart, Marc C. A.,Bonura, Giuseppe,Frusteri, Francesco,Barta, Katalin

, p. 5498 - 5505 (2018/11/20)

The selective N-alkylation of amines with alcohols via the borrowing hydrogen strategy represents a prominent sustainable catalytic method, which produces water as the only by-product and is ideally suited for the catalytic transformation of widely available alcohol reaction partners that can be derived from renewable resources. Intensive research has been devoted to the development of novel catalysts that are mainly based on expensive noble metals. However, the availability of homogeneous or heterogeneous non-precious metal catalysts for this transformation is very limited. Herein we present a highly active and remarkably easy-to-prepare Ni based catalyst system for the selective N-alkylation of amines with alcohols, that is in situ generated from Ni(COD)2 and KOH under ligand-free conditions. This novel method is very efficient for the functionalization of aniline and derivatives with a wide range of aromatic and aliphatic alcohols as well as diols and exhibits excellent functional group tolerance including halides, benzodioxane and heteroaromatic groups. Several TEM measurements combined with elemental analysis were conducted in order to gain insight into the nature of the active catalyst and factors influencing reactivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22710-00-5