Welcome to LookChem.com Sign In|Join Free

CAS

  • or

227105-11-5

Post Buying Request

227105-11-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

227105-11-5 Usage

Chemical Class

Carboxylic acid

Derivative

Derived from styrene

Application

Primarily used in pharmaceutical research
Anti-inflammatory properties
Antioxidant properties
Antimicrobial properties

Medical Potential

Investigated for treatment of various diseases and conditions

Interest

Compound of interest in the medical and pharmaceutical industries

Check Digit Verification of cas no

The CAS Registry Mumber 227105-11-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,2,7,1,0 and 5 respectively; the second part has 2 digits, 1 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 227105-11:
(8*2)+(7*2)+(6*7)+(5*1)+(4*0)+(3*5)+(2*1)+(1*1)=95
95 % 10 = 5
So 227105-11-5 is a valid CAS Registry Number.

227105-11-5Relevant articles and documents

Synthesis and evaluation of new sesamol-based phenolic acid derivatives with hypolipidemic, antioxidant, and hepatoprotective effects

Xie, Yundong,Liu, Jiping,Shi, Yongheng,Bin Wang,Wang, Xiaoping,Wang, Wei,Sun, Meng,Xu, Xinya,He, Shipeng

, p. 1688 - 1702 (2021/07/26)

The objective of this study is to synthesize a series of sesamol-based phenolic acid derivatives, which were designed by combination principle. The hypolipidemic activity of all these compounds was preliminarily screened by acute hyperlipidemic mice model induced by Triton WR 1339, in which compound T6 exhibited more significant reducing plasma TG and TC than fenofibrate. Compound T6 was also found to obviously decrease TG and TC both in the plasma and hepatic tissue of high-fat-diet-induced hyperlipidemic mice. Moreover, T6 showed hepatoprotective effects, which remarkable amelioration in characteristic liver enzymes was examined and the histopathological observation displayed that compound T6 inhibited lipids accumulation in the hepatic. The levels of PPAR-α receptor related to lipids metabolism in hepatic tissue were upregulated after T6 treatment. Other potent effects of T6 such as antioxidant and anti-inflammatory activity were also observed. On the bases of these findings, compound T6 may serve as an effective hypolipidemic and hepatoprotective agent. [Figure not available: see fulltext.]

Photo-Promoted Decarboxylative Alkylation of α, β-Unsaturated Carboxylic Acids with ICH2CN for the Synthesis of β, γ-Unsaturated Nitriles

Pan, Chunxiang,Yang, Chunhui,Li, Kangkui,Zhang, Keyang,Zhu, Yuanbin,Wu, Shiyuan,Zhou, Yongyun,Fan, Baomin

supporting information, p. 7188 - 7193 (2021/10/01)

An efficient, catalyst/photocatalyst-free, and cost-effective methodology for the decarboxylative alkylation of α,β-unsaturated carboxylic acids to synthesize β,γ-unsaturated nitriles has been developed. The reaction proceeded in an environmentally benign atmosphere of blue light-emitting diode irradiation with K2CO3 and water at room temperature. The methodology worked for a wide range of substrates (22 examples) with up to 83% yield. The protocol is also compatible for gram-scale synthesis.

Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells

Ullah, Sultan,Kang, Dongwan,Lee, Sanggwon,Ikram, Muhammad,Park, Chaeun,Park, Yujin,Yoon, Sik,Chun, Pusoon,Moon, Hyung Ryong

, p. 78 - 92 (2018/10/24)

Of the three enzymes that regulate the biosynthesis of melanin, tyrosinase and its related proteins TYRP-1 and TYRP-2, tyrosinase is the most important because of its ability to limit the rate of melanin production in melanocytes. For treating skin pigmentation disorders caused by an excess of melanin, the inhibition of tyrosinase enzyme is by far the most established strategy. Cinnamic acid is a safe natural product with an (E)-β-phenyl-α,β-unsaturated carbonyl motif that we have previously shown to play an important role in high tyrosinase inhibition. Since cinnamic acid is relatively hydrophilic, which hinders its absorption on the skin, fifteen less hydrophilic cinnamic amide derivatives (1–15) were designed as safe and more potent tyrosinase inhibitors and were synthesized through a Horner-Wadsworth-Emmons reaction. The use of conc-HCl and acetic acid for debenzylation of the O-benzyl-protected cinnamic amides 40–54 produced the following three results. 1) Cinnamic amides 43, 48, and 53 with a 2,4-dibenzyloxyphenyl group, irrespective of the amine type of the amides, produced complex compounds with high polarity. 2) Cinnamic amides 40–42, 44, 50–52, and 54 with a benzylamino, or diethylamino group produced the desired debenzylated cinnamic amides 1–3, 5, 10–13, and 15. 3) Cinnamic amides 45–47, and 49 with an anilino moiety provided 3,4-dihydroquinolinones 16–19 through intramolecular Michael addition of the anilide group. Notably, the use of BBr3 as an alternative debenzylating agent for debenzylation of cinnamic amides 45–49 with the anilino moiety provided our desired cinnamic amides 6–10 without inducing the intramolecular Michael addition. Debenzylation of cinnamic amides 43, 48, and 53 with a 2,4-dibenzyloxyphenyl group was also successfully accomplished using BBr3 to give 4, 9, and 14. Among the nine compounds that inhibited mushroom tyrosinase more potently at 25 μM than kojic acid, four cinnamic amides 4, 5, 9, and 14 showed 3-fold greater tyrosinase inhibitory activity than kojic acid. The docking simulation using tyrosinase indicated that these four cinnamic amides (?6.2 to ?7.9 kcal/mol) bind to the active site of tyrosinase with stronger binding affinity than kojic acid (?5.7 kcal/mol). All four cinnamic amides inhibited melanogenesis and tyrosinase activity more potently than kojic acid in α-MSH-stimulated B16F10 melanoma cells in a dose-dependent manner without cytotoxicity. The strong correlation between tyrosinase activity and melanin content suggests that the anti-melanogenic effect of cinnamic amides is due to tyrosinase inhibitory activity. Considering that the cinnamic amides 4, 9, and 14, which exhibited strong inhibition on mushroom tyrosinase and potent anti-melanogenic effect in B16F10 cells, commonly have a 2,4-dihydroxyphenyl substituent, the 2,4-dihydroxyphenyl substituent appears to be essential for high anti-melanogenesis. These results support the potential of these four cinnamic amides as novel and potent tyrosinase inhibitors for use as therapeutic agents with safe skin-lightening efficiency.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 227105-11-5