Welcome to LookChem.com Sign In|Join Free

CAS

  • or

24965-87-5

Post Buying Request

24965-87-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

24965-87-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 24965-87-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,4,9,6 and 5 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 24965-87:
(7*2)+(6*4)+(5*9)+(4*6)+(3*5)+(2*8)+(1*7)=145
145 % 10 = 5
So 24965-87-5 is a valid CAS Registry Number.

24965-87-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (S)-3-methylcyclohexanone

1.2 Other means of identification

Product number -
Other names (S)-3-methyl-2-cyclohexanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:24965-87-5 SDS

24965-87-5Relevant articles and documents

A robust and stereocomplementary panel of ene-reductase variants for gram-scale asymmetric hydrogenation

Nett, Nathalie,Duewel, Sabine,Schmermund, Luca,Benary, Gerrit E.,Ranaghan, Kara,Mulholland, Adrian,Opperman, Diederik J.,Hoebenreich, Sabrina

, (2021/01/25)

We report an engineered panel of ene-reductases (ERs) from Thermus scotoductus SA-01 (TsER) that combines control over facial selectivity in the reduction of electron deficient C[dbnd]C double bonds with thermostability (up to 70 °C), organic solvent tolerance (up to 40 % v/v) and a broad substrate scope (23 compounds, three new to literature). Substrate acceptance and facial selectivity of 3-methylcyclohexenone was rationalized by crystallisation of TsER C25D/I67T and in silico docking. The TsER variant panel shows excellent enantiomeric excess (ee) and yields during bi-phasic preparative scale synthesis, with isolated yield of up to 93 % for 2R,5S-dihydrocarvone (3.6 g). Turnover frequencies (TOF) of approximately 40 000 h?1 were achieved, which are comparable to rates in hetero- and homogeneous metal catalysed hydrogenations. Preliminary batch reactions also demonstrated the reusability of the reaction system by consecutively removing the organic phase (n-pentane) for product removal and replacing with fresh substrate. Four consecutive batches yielded ca. 27 g L?1 R-levodione from a 45 mL aqueous reaction, containing less than 17 mg (10 μM) enzyme and the reaction only stopping because of acidification. The TsER variant panel provides a robust, highly active and stereocomplementary base for further exploitation as a tool in preparative organic synthesis.

Counterion Enhanced Organocatalysis: A Novel Approach for the Asymmetric Transfer Hydrogenation of Enones

Scharinger, Fabian,Márk Pálv?lgyi, ádám,Zeindlhofer, Veronika,Schnürch, Michael,Schr?der, Christian,Bica-Schr?der, Katharina

, p. 3776 - 3782 (2020/06/22)

We present a novel strategy for organocatalytic transfer hydrogenations relying on an ion-paired catalyst of natural l-amino acids as main source of chirality in combination with racemic, atropisomeric phosphoric acids as counteranion. The combination of a chiral cation with a structurally flexible anion resulted in a novel chiral framework for asymmetric transfer hydrogenations with enhanced selectivity through synergistic effects. The optimized catalytic system, in combination with a Hantzsch ester as hydrogen source for biomimetic transfer hydrogenation, enabled high enantioselectivity and excellent yields for a series of α,β-unsaturated cyclohexenones under mild conditions. Moreover, owing to the use of readily available and chiral pool-derived building blocks, it could be prepared in a straightforward and significantly cheaper way compared to the current state of the art.

Chemo-Enzymatic Oxidative Rearrangement of Tertiary Allylic Alcohols: Synthetic Application and Integration into a Cascade Process

Brenna, Elisabetta,Crotti, Michele,De Pieri, Matteo,Gatti, Francesco G.,Manenti, Gabriele,Monti, Daniela

, p. 3677 - 3686 (2018/06/04)

A chemo-enzymatic catalytic system, comprised of Bobbitt's salt and laccase from Trametes versicolor, allowed the [1,3]-oxidative rearrangement of endocyclic allylic tertiary alcohols into the corresponding enones under an Oxygen atmosphere in aqueous media. The yields were in most cases quantitative, especially for the cyclopent-2-en-1-ol or the cyclohex-2-en-1-ol substrates without an electron withdrawing group (EWG) on the side chain. Transpositions of macrocyclic alkenols or tertiary alcohols bearing an EWG on the side chain were instead carried out in acetonitrile by using an immobilized laccase preparation. Dehydro-Jasmone, dehydro-Hedione, dehydro-Muscone and other fragrance precursors were directly prepared with this procedure, while a synthetic route was developed to easily transform a cyclopentenone derivative into trans-Magnolione and dehydro-Magnolione. The rearrangement of exocyclic allylic alcohols was tested as well, and a dynamic kinetic resolution was observed: α,β-unsaturated ketones with (E)-configuration and a high diastereomeric excess were synthesized. Finally, the 2,2,6,6-tetramethyl-1-piperidinium tetrafluoroborate (TEMPO+BF4?)/laccase catalysed oxidative rearrangement was combined with the ene-reductase/alcohol dehydrogenase cascade process in a one-pot three-step synthesis of cis or trans 3-methylcyclohexan-1-ol, in both cases with a high optical purity. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 24965-87-5