Welcome to LookChem.com Sign In|Join Free

CAS

  • or

25876-34-0

Post Buying Request

25876-34-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

25876-34-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 25876-34-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,5,8,7 and 6 respectively; the second part has 2 digits, 3 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 25876-34:
(7*2)+(6*5)+(5*8)+(4*7)+(3*6)+(2*3)+(1*4)=140
140 % 10 = 0
So 25876-34-0 is a valid CAS Registry Number.
InChI:InChI=1/C18H35N/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19/h6-7,9-10H,2-5,8,11-19H2,1H3/b7-6-,10-9-

25876-34-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name (9Z,12Z)-octadeca-9,12-dien-1-amine

1.2 Other means of identification

Product number -
Other names N-(cis-9-cis-12-octadecadienyl)amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:25876-34-0 SDS

25876-34-0Downstream Products

25876-34-0Relevant articles and documents

Direct Enzymatic Synthesis of Fatty Amines from Renewable Triglycerides and Oils

Citoler, Joan,Finnigan, William,Bevinakatti, Han,Turner, Nicholas J.

, (2021/11/30)

Fatty amines represent an important class of commodity chemicals which have broad applicability in different industries. The synthesis of fatty amines starts from renewable sources such as vegetable oils or animal fats, but the process has multiple drawbacks that compromise the overall effectiveness and efficiency of the synthesis. Herein, we report a proof-of-concept biocatalytic alternative towards the synthesis of primary fatty amines from renewable triglycerides and oils. By coupling a lipase with a carboxylic acid reductase (CAR) and a transaminase (TA), we have accomplished the direct synthesis of multiple medium and long chain primary fatty amines in one pot with analytical yields as high as 97 %. We have also performed a 75 mL preparative scale reaction for the synthesis of laurylamine from trilaurin, obtaining 73 % isolated yield.

Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application

Han, Bo,Jiao, Haijun,Wu, Lipeng,Zhang, Jiong

, p. 2059 - 2067 (2021/09/02)

Developing mild and efficient catalytic methods for the selective synthesis of amines is a longstanding research objective. In this respect, catalytic deoxygenative amide reduction has proven to be promising but challenging, as this approach necessitates selective C–O bond cleavage. Herein, we report the selective hydroboration of primary, secondary, and tertiary amides at room temperature catalyzed by an earth-abundant-metal catalyst, Zr-H, for accessing diverse amines. Various readily reducible functional groups, such as esters, alkynes, and alkenes, were well tolerated. Furthermore, the methodology was extended to the synthesis of bio- and drug-derived amines. Detailed mechanistic studies revealed a reaction pathway entailing aldehyde and amido complex formation via an unusual C–N bond cleavage-reformation process, followed by C–O bond cleavage.

Simplifying the Chemical Structure of Cationic Lipids for siRNA-Lipid Nanoparticles

Kuboyama, Takeshi,Yagi, Kaori,Naoi, Tomoyuki,Era, Tomohiro,Yagi, Nobuhiro,Nakasato, Yoshisuke,Yabuuchi, Hayato,Takahashi, Saori,Shinohara, Fumikazu,Iwai, Hiroto,Koubara-Yamada, Ayumi,Hasegawa, Kazumasa,Miwa, Atsushi

supporting information, p. 749 - 753 (2019/05/06)

We report a potent cationic lipid, SST-02 ((3-hydroxylpropyl)dilinoleylamine), which possesses a simple chemical structure and is synthesized just in one step. Cationic lipids are key components of siRNA-lipid nanoparticles (LNP), which may serve as potential therapeutic agents for various diseases. For a decade, chemists have given enhanced potency and new functions to cationic lipids along with structural complexity. In this study, we conducted a medicinal chemistry campaign pursuing chemical simplicity and found that even dilinoleylmethylamine (SST-01) and methylpalmitoleylamine could be used for the in vitro and in vivo siRNA delivery. Further optimization revealed that a hydroxyl group boosted potency, and SST-02 showed an ID50 of 0.02 mg/kg in the factor VII (FVII) model. Rats administered with 3 mg/kg of SST-02 LNP did not show changes in body weight, blood chemistry, or hematological parameters, while the AST level decreased at a dose of 5 mg/kg. The use of SST-02 avoids a lengthy synthetic route and may thus decrease the future cost of nucleic acid therapeutics.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 25876-34-0