Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2589-79-9

Post Buying Request

2589-79-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2589-79-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 2589-79-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,5,8 and 9 respectively; the second part has 2 digits, 7 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 2589-79:
(6*2)+(5*5)+(4*8)+(3*9)+(2*7)+(1*9)=119
119 % 10 = 9
So 2589-79-9 is a valid CAS Registry Number.
InChI:InChI=1/C24H42O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-23-19-21-24(25)22-20-23/h19-22,25H,2-18H2,1H3

2589-79-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-octadecylphenol

1.2 Other means of identification

Product number -
Other names p-octadecylphenol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2589-79-9 SDS

2589-79-9Relevant articles and documents

Controlling the formation of heliconical smectic phases by molecular design of achiral bent-core molecules

Alaasar, Mohamed,Cai, Xiaoqian,Eremin, Alexey,Kurachkina, Marharyta,Lehmann, Anne,Liu, Feng,Nagaraj, Mamatha,Poppe, Marco,Poppe, Silvio,Tamba, Maria-Gabriela,Tschierske, Carsten,Vij, Jagdish K.

, p. 3316 - 3336 (2020/03/23)

Fluids with spontaneous helical structures formed by achiral low molecular mass molecules is a newly emerging field with great application potential. Here, we explore the chemical mechanisms of the helix formation by systematically modifying the structure of a bent 4-cyanoresorcinol unit functionalized with two different phenyl benzoate based aromatic rods and terminated with two alkyl chains of variable length. The majority of these achiral compounds self-assemble, forming a short-pitch heliconical liquid crystalline phase in broad temperature ranges. In some cases, it occurs without any competing low-temperature phase. We demonstrate that the mirror symmetry broken mesophase occurs at the paraelectric-(anti)ferroelectric transition if the tilt angle of the molecules in the smectic layers is around 18-20° and if this transition coincides with a change of the tilt correlation between the layers. In the close vicinity of this transition, a field-induced heliconical phase develops as well as a new heliconical phase with polarization-randomized structure. These investigations provide a blueprint for the future design of achiral molecules capable of spontaneous mirror symmetry breaking by the formation of heliconical liquid crystalline phases.

Phase behavior and molecular packing of octadecyl phenols and their methyl ethers at the air/water interface

Peikert, Miroslawa,Chen, Xiadong,Chi, Lifeng,Brezesinski, Gerald,Janich, Simon,Wuerthwein, Ernst-Ulrich,Schaefer, Hans J.

, p. 5780 - 5789 (2014/06/10)

Noncovalent molecular interactions, such as hydrogen bonding and van der Waals forces, play an important role in self-assembling to supramolecular structures. To study these forces, we chose monolayers at the air/water interface to limit the possible arrangements of the interacting molecules. Furthermore, monolayers provide useful tools to understand and study interactions between molecules in a controlled and fundamental way. The phase behavior and molecular packing of the phenols 1-(4-hydroxyphenyl)-octadecane (5a), 1-(3,4-dihydroxyphenyl)-octadecane (6), and 1-(2,3,4-trihydroxyphenyl)- octadecane (3) and their methyl ethers in monolayers at the air/water interface have been examined by π/A isotherms, Brewster angle microscopy (BAM), grazing incidence X-ray diffraction (GIXD) measurements, and density functional theory (DFT) calculations. The phenols are synthesized by Friedel-Crafts acylation of methoxybenzenes, hydrogenation of the resulting aryl ketones, and cleavage of the aryl methyl ethers. In the π/A isotherms and in BAM, the phenols show patches of the solid condensed phase at large molecular areas and the monolayers collapse at high pressures. Furthermore, the dimensions of the unit cell obtained by GIXD measurements are compatible with an arrangement of the phenyl rings that allows one aryl ring to interact with four adjacent phenyl rings in an edge-to-face arrangement, which leads to a significant binding energy. The experimental data are in good agreement with DFT calculations of 2D crystalline benzene and p-cresol arrangements. The enhanced monolayer stability of phenol 5a can be explained by hydrogen bonds of the hydroxyl group with water and van der Waals forces between the alkyl chains and aryl-aryl interactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2589-79-9