Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27805-39-6

Post Buying Request

27805-39-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27805-39-6 Usage

General Description

4-methoxy-alpha-pyridylbenzyl alcohol is a chemical compound with the molecular formula C14H15NO2. It is often used as an intermediate in the synthesis of pharmaceuticals and agrochemicals. 4-methoxy-alpha-pyridylbenzyl alcohol is a white to off-white solid with a melting point of 96-98°C. It is soluble in organic solvents such as ethanol and acetone, but is sparingly soluble in water. 4-methoxy-alpha-pyridylbenzyl alcohol has been identified as a potential allergen and has been associated with allergic contact dermatitis. Research into its potential medicinal uses and applications is ongoing.

Check Digit Verification of cas no

The CAS Registry Mumber 27805-39-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,8,0 and 5 respectively; the second part has 2 digits, 3 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 27805-39:
(7*2)+(6*7)+(5*8)+(4*0)+(3*5)+(2*3)+(1*9)=126
126 % 10 = 6
So 27805-39-6 is a valid CAS Registry Number.

27805-39-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (4-methoxyphenyl)-pyridin-2-ylmethanol

1.2 Other means of identification

Product number -
Other names EINECS 248-664-2

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27805-39-6 SDS

27805-39-6Relevant articles and documents

Antiplasmodial activity of [(aryl)arylsulfanylmethyl]pyridine

Kumar, Sanjay,Das, Sajal Kumar,Dey, Sumanta,Maity, Pallab,Guha, Mithu,Choubey, Vinay,Panda, Gautam,Bandyopadhyay, Uday

, p. 705 - 715 (2008)

A series of [(aryl)arylsufanylmethyl]pyridines (AASMP) have been synthesized. These compounds inhibited hemozoin formation, formed complexes (KD = 12 to 20 μM) with free heme (ferriprotoporphyrin IX) at a pH close to the pH of the parasite food vacuole, and exhibited antimalarial activity in vitro. The inhibition of hemozoin formation may develop oxidative stress in Plasmodium falciparum due to the accumulation of free heme. Interestingly, AASMP developed oxidative stress in the parasite, as evident from the decreased level of glutathione and increased formation of lipid peroxide, H2O2, and hydroxyl radical (·OH) in P. falciparum. AASMP also caused mitochondrial dysfunction by decreasing mitochondrial potential (ΔΨm) in malaria parasite, as measured by both flow cytometry and fluorescence microscopy. Furthermore, the generation of ·OH may be mainly responsible for the antimalarial effect of AASMP since ·OH scavengers such as mannitol, as well as spin trap α-phenyl-n- tertbutylnitrone, significantly protected P. falciparum from AASMP-mediated growth inhibition. Cytotoxicity testing of the active compounds showed selective activity against malaria parasite with selectivity indices greater than 100. AASMP also exhibited profound antimalarial activity in vivo against chloroquine resistant P. yoelii. Thus, AASMP represents a novel class of antimalarial. Copyright

Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes

Barigye, Stephen J.,Carpio, Laureano E.,Ferroud, Clotilde,Giner, Rosa M.,Goya-Jorge, Elizabeth,Gozalbes, Rafael,Loones, Nicolas,Rampal, Celine,Sylla-Iyarreta Veitía, Maité

supporting information, (2020/10/02)

The aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects. TAMs bearing benzotrifluoride, naphthol or heteroaromatic (indole, quinoline or thiophene) rings seem to be prone to AhR activation unlike phenyl substituted or benzotriazole derivatives. A molecular docking analysis with the AhR ligand binding domain (LBD) showed similarities in the binding mode and in the interactions of the most potent TAM identified 4-(pyridin-2-yl (thiophen-2-yl)methyl)phenol (22) compared to the endogenous AhR agonist 5,11-dihydroindolo[3,2-b]carbazole-12-carbaldehyde (FICZ). Finally, in silico predictions of physicochemical and biopharmaceutical properties for the most potent agonistic compounds were performed and these exhibited acceptable druglikeness and good ADME profiles. To our knowledge, this is the first study assessing the AhR modulatory effects of unsymmetrical TAM class of compounds.

Conformational Dynamics-Guided Loop Engineering of an Alcohol Dehydrogenase: Capture, Turnover and Enantioselective Transformation of Difficult-to-Reduce Ketones

Liu, Beibei,Qu, Ge,Li, Jun-Kuan,Fan, Wenchao,Ma, Jun-An,Xu, Yan,Nie, Yao,Sun, Zhoutong

, p. 3182 - 3190 (2019/05/15)

Directed evolution of enzymes for the asymmetric reduction of prochiral ketones to produce enantio-pure secondary alcohols is particularly attractive in organic synthesis. Loops located at the active pocket of enzymes often participate in conformational changes required to fine-tune residues for substrate binding and catalysis. It is therefore of great interest to control the substrate specificity and stereochemistry of enzymatic reactions by manipulating the conformational dynamics. Herein, a secondary alcohol dehydrogenase was chosen to enantioselectively catalyze the transformation of difficult-to-reduce bulky ketones, which are not accepted by the wildtype enzyme. Guided by previous work and particularly by structural analysis and molecular dynamics (MD) simulations, two key residues alanine 85 (A85) and isoleucine 86 (I86) situated at the binding pocket were thought to increase the fluctuation of a loop region, thereby yielding a larger volume of the binding pocket to accommodate bulky substrates. Subsequently, site-directed saturation mutagenesis was performed at the two sites. The best mutant, where residue alanine 85 was mutated to glycine and isoleucine 86 to leucine (A85G/I86L), can efficiently reduce bulky ketones to the corresponding pharmaceutically interesting alcohols with high enantioselectivities (~99% ee). Taken together, this study demonstrates that introducing appropriate mutations at key residues can induce a higher flexibility of the active site loop, resulting in the improvement of substrate specificity and enantioselectivity. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27805-39-6