Welcome to LookChem.com Sign In|Join Free

CAS

  • or

32189-34-7

Post Buying Request

32189-34-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

32189-34-7 Usage

General Description

(R)-4-Bromomandelic acid, also known as (R)-2-(4-bromophenyl)glycolic acid, is a chemical compound that belongs to the class of mandelic acids. It has a molecular formula of C8H7BrO3 and a molecular weight of 233.04 g/mol. (R)-4-BROMOMANDELIC ACID is a chiral molecule with a stereocenter, and the (R)-enantiomer is the mirror image of the (S)-enantiomer. (R)-4-Bromomandelic acid is commonly used in the synthesis of various pharmaceuticals and agrochemicals. It is also employed as a chiral resolving agent and as a chiral auxiliary in organic reactions. The compound's versatile applications make it a valuable chemical in the fields of medicinal chemistry and organic synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 32189-34-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,2,1,8 and 9 respectively; the second part has 2 digits, 3 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 32189-34:
(7*3)+(6*2)+(5*1)+(4*8)+(3*9)+(2*3)+(1*4)=107
107 % 10 = 7
So 32189-34-7 is a valid CAS Registry Number.

32189-34-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (2R)-2-(4-bromophenyl)-2-hydroxyacetic acid

1.2 Other means of identification

Product number -
Other names D-4-bromomandelic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:32189-34-7 SDS

32189-34-7Relevant articles and documents

Resolution of halogenated mandelic acids through enantiospecific co-crystallization with levetiracetam

Peng, Yangfeng,Wang, Jie

, (2021/09/18)

The resolution of halogenated mandelic acids using levetiracetam (LEV) as a resolving agent via forming enantiospecific co-crystal was presented. Five halogenated mandelic acids, 2-chloromandelic acid (2-ClMA), 3-chloromandelic acid (3-ClMA), 4-chloromandelic acid (4-ClMA), 4-bromomandelic acid (4-BrMA), and 4-fluoromandelic acid (4-FMA), were selected as racemic compounds. The effects of the equilibrium time, molar ratio of the resolving agent to racemate, amount of solvent, and crystallization temperature on resolution performance were investigated. Under the optimal conditions, the resolution efficiency reached up to 94% and the enantiomeric excess (%e.e.) of (R)-3-chloromandelic acid was 63%e.e. All five halogenated mandelic acids of interest in this study can be successfully separated by LEV via forming enantiospecific co-crystal, but the resolution performance is significantly different. The results showed that LEV selectively co-crystallized with S enantiomers of 2-ClMA, 3-ClMA, 4-ClMA, and 4-BrMA, while it co-crystallized with R enantiomers of 4-FMA. This indicates that the position and type of substituents of racemic compounds not only affect the co-crystal configuration, but also greatly affect the efficiency of co-crystal resolution.

Highly Efficient Deracemization of Racemic 2-Hydroxy Acids in a Three-Enzyme Co-Expression System Using a Novel Ketoacid Reductase

Xue, Ya-Ping,Wang, Chuang,Wang, Di-Chen,Liu, Zhi-Qiang,Zheng, Yu-Guo

, p. 1 - 13 (2018/04/26)

Enantiopure 2-hydroxy acids (2-HAs) are important intermediates for the synthesis of pharmaceuticals and fine chemicals. Deracemization of racemic 2-HAs into the corresponding single enantiomers represents an economical and highly efficient approach for synthesizing chiral 2-HAs in industry. In this work, a novel ketoacid reductase from Leuconostoc lactis (LlKAR) with higher activity and substrate tolerance towards aromatic α-ketoacids was discovered by genome mining, and then its enzymatic properties were characterized. Accordingly, an engineered Escherichia coli (HADH-LlKAR-GDH) co-expressing 2-hydroxyacid dehydrogenase, LlKAR, and glucose dehydrogenase was constructed for efficient deracemization of racemic 2-HAs. Most of the racemic 2-HAs were deracemized to their (R)-isomers at high yields and enantiomeric purity. In the case of racemic 2-chloromandelic acid, as much as 300 mM of substrate was completely transformed into the optically pure (R)-2-chloromandelic acid (> 99% enantiomeric excess) with a high productivity of 83.8 g L?1 day?1 without addition of exogenous cofactor, which make this novel whole-cell biocatalyst more promising and competitive in practical application.

The Synthesis of Chiral α-Aryl α-Hydroxy Carboxylic Acids via RuPHOX-Ru Catalyzed Asymmetric Hydrogenation

Guo, Huan,Li, Jing,Liu, Delong,Zhang, Wanbin

, p. 3665 - 3673 (2017/09/11)

A ruthenocenyl phosphino-oxazoline-ruthenium complex (RuPHOX?Ru) catalyzed asymmetric hydrogenation of α-aryl keto acids has been successfully developed, affording the corresponding chiral α-aryl α-hydroxy carboxylic acids in high yields and with up to 97% ee. The reaction could be performed on a gram scale with a relatively low catalyst loading (up to 5000 S/C) and the resulting products can be transformed to several chiral building blocks, biologically active compounds and chiral drugs. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 32189-34-7