Welcome to LookChem.com Sign In|Join Free

CAS

  • or

325-69-9

Post Buying Request

325-69-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

325-69-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 325-69-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,2 and 5 respectively; the second part has 2 digits, 6 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 325-69:
(5*3)+(4*2)+(3*5)+(2*6)+(1*9)=59
59 % 10 = 9
So 325-69-9 is a valid CAS Registry Number.

325-69-9Relevant articles and documents

A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids

Varga, Andrea,Csuka, Pál,Sonesouphap, Orlavanah,Bánóczi, Gergely,To?a, Monica Ioana,Katona, Gabriel,Molnár, Zsófia,Bencze, László Csaba,Poppe, László,Paizs, Csaba

, p. 185 - 194 (2020/04/28)

A novel phenylalanine ammonia-lyase of the psychrophilic yeast Pseudozyma antarctica (PzaPAL) was identified by screening microbial genomes against known PAL sequences. PzaPAL has a significantly different substrate binding pocket with an extended loop (26 aa long) connected to the aromatic ring binding region of the active site as compared to the known PALs from eukaryotes. The general properties of recombinant PzaPAL expressed in E. coli were characterized including kinetic features of this novel PAL with L-phenylalanine (S)-1a and further racemic substituted phenylalanines rac-1b-g,k. In most cases, PzaPAL revealed significantly higher turnover numbers than the PAL from Petroselinum crispum (PcPAL). Finally, the biocatalytic performance of PzaPAL and PcPAL was compared in the kinetic resolutions of racemic phenylalanine derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.

Bi-enzymatic Conversion of Cinnamic Acids to 2-Arylethylamines

Weise, Nicholas J.,Thapa, Prasansa,Ahmed, Syed T.,Heath, Rachel S.,Parmeggiani, Fabio,Turner, Nicholas J.,Flitsch, Sabine L.

, p. 995 - 998 (2020/01/21)

The conversion of carboxylic acids, such as acrylic acids, to amines is a transformation that remains challenging in synthetic organic chemistry. Despite the ubiquity of similar moieties in natural metabolic pathways, biocatalytic routes seem to have been overlooked for this purpose. Herein we present the conception and optimisation of a two-enzyme system, allowing the synthesis of β-phenylethylamine derivatives from readily-available ring-substituted cinnamic acids. After characterisation of both parts of the reaction in a two-step approach, a set of conditions allowing the one-pot biotransformation was optimised. This combination of a reversible deaminating and irreversible decarboxylating enzyme, both specific for the amino acid intermediate in tandem, represents a general method by which new strategies for the conversion of carboxylic acids to amines could be designed.

One-Pot Enzymatic Synthesis of d-Arylalanines Using Phenylalanine Ammonia Lyase and l-Amino Acid Deaminase

Zhu, Longbao,Feng, Guoqiang,Ge, Fei,Song, Ping,Wang, Taotao,Liu, Yi,Tao, Yugui,Zhou, Zhemin

, p. 1 - 15 (2018/06/11)

The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic d,l-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure d-arylalanine, a modified AvPAL with high d-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for d-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual l-enantiomer product in reaction solution could be converted into the d-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH3BH3. At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (eeD)) of d-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize d-arylalanine with different groups on the phenyl ring. Among these d-arylalanines, the yield of m-nitro-d-phenylalanine was highest and reached 96%, and the eeD exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 325-69-9