Welcome to LookChem.com Sign In|Join Free

CAS

  • or

331-55-5

Post Buying Request

331-55-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

331-55-5 Usage

Description

(3-Fluoro-phenylsulfanyl)-acetic acid, also known as 3-fluorothiophenecarboxylic acid, is a chemical compound that features a fluorine-substituted phenylsulfanyl group attached to an acetic acid moiety. It is a sulfanylacetic acid derivative with unique structural and property characteristics, making it a valuable intermediate in the synthesis of pharmaceuticals, agrochemicals, and other materials.

Uses

Used in Pharmaceutical Research:
(3-Fluoro-phenylsulfanyl)-acetic acid is used as a building block in pharmaceutical research for the development of new drugs. Its unique structure and properties contribute to the creation of complex molecules with potential therapeutic applications.
Used in Agrochemical Production:
In the agrochemical industry, (3-Fluoro-phenylsulfanyl)-acetic acid is used as an intermediate in the production of various agrochemicals. Its role in the synthesis of these compounds aids in the development of effective products for agricultural use.
Used in Materials Science:
(3-Fluoro-phenylsulfanyl)-acetic acid is also utilized in materials science for the development of new materials. Its unique properties allow for the creation of innovative materials with potential applications in various industries.

Check Digit Verification of cas no

The CAS Registry Mumber 331-55-5 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,3 and 1 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 331-55:
(5*3)+(4*3)+(3*1)+(2*5)+(1*5)=45
45 % 10 = 5
So 331-55-5 is a valid CAS Registry Number.

331-55-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name [(3-Fluorophenyl)sulfanyl]acetic acid

1.2 Other means of identification

Product number -
Other names 3-fluorophenyl piperazinyl ketone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:331-55-5 SDS

331-55-5Relevant articles and documents

Competitive behavior of nitrogen based axial ligands in the oxovanadium(IV)-salen catalyzed sulfoxidation of phenylmercaptoacetic acid

Kavitha, C.,Subramaniam, P.

, (2020/08/10)

The sulfoxidation of twelve phenylmercaptoacetic acids (PMAA) by H2O2 catalyzed by three oxovanadium(IV)-salen complexes, having varied substituents on PMAA and salen with regard to their position, size and inductive effect, has been performed spectrophotometrically in 100percent acetonitrile medium. Three nitrogen bases (NB), pyridine (Py), imidazole (ImH) and 1-methylimidazole (MeIm), were used as axial ligands. It has been found that the rate of sulfoxidation is not only tuned by the substituents on PMAA and salen, but it is also varied by the addition of nitrogen bases. The observed order of retardation found among the different nitrogen bases is ImH > MeIm > Py. The rate of reaction decreases with the increase in concentration of the NB axial ligands. The strongly binding ImH shows the least reactivity. Hydroperoxovanadium(V)-salen has been proposed as the sole active oxidizing species. A detailed mechanistic study reveals that the low rate constant values in the presence of the nitrogen base is due to the existence of competition of NB with H2O2 and PMAA during the formation of active species and the coordination of PMAA with active species, respectively. Both electron donating and electron withdrawing substituents on PMAA retard the sulfoxidation rate significantly. The Hammett correlation between the rate constants and substituent constants shows a non-linear concave downward curve which is explained by the existence of two different rate determining steps within the same mechanism; coordination of PMAA with the active species for electron withdrawing substituents and transfer of oxygen to PMAA for electron donating substituents. All the experimental observations are explained by proposing a suitable mechanism.

A paradigm shift in rate determining step from single electron transfer between phenylsulfinylacetic acids and iron(III) polypyridyl complexes to nucleophilic attack of water to the produced sulfoxide radical cation: a non-linear Hammett

Subramaniam, Perumal,Janet Sylvia Jaba Rose, Jebamoney,Jeevi Esther Rathinakumari, Rajasingh

, p. 496 - 504 (2016/09/21)

Mechanism of oxidative decarboxylation of phenylsulfinylacetic acids (PSAAs) by iron(III) polypyridyl complexes in aqueous acetonitrile medium has been investigated spectrophotometrically. An initial intermediate formation between PSAA and [Fe(NN)3]3+ is confirmed from the observed Michaelis–Menten kinetics and fractional order dependence on PSAA. Significant rate retardation with concentration of [Fe(NN)3]3+ is rationalized on the basis of coordination of a water molecule at the carbon atom adjacent to the ring nitrogen of the metal polypyridyl complexes by nucleophilic attack at higher concentrations. Electron-withdrawing and electron-releasing substituents in PSAA facilitate the reaction and Hammett correlation gives an upward ‘V’ shaped curve. The apparent upward curvature is rationalized based on the change in the rate determining step from electron transfer to nucleophilic attack, by changing the substituents from electron-releasing to electron-withdrawing groups. Electron-releasing substituents in PSAA accelerate the electron transfer from PSAA to the complex and also stabilize the intermediate through resonance interaction leading to negative reaction constants (ρ). Conversely, electron-withdrawing groups, while retarding the electron transfer exert an accelerating effect on the nucleophilic attack of H2O which leading to low magnitude of ρ+ compared to high ρ? values of electron-releasing groups. Marcus theory is applied, and a fair agreement is seen with the experimental values. Copyright

Inhibition of monoamine oxidase by 8-phenoxymethylcaffeine derivatives

Okaecwe, Thokozile,Swanepoel, Abraham J.,Petzer, Anél,Bergh, Jacobus J.,Petzer, Jacobus P.

experimental part, p. 4336 - 4347 (2012/08/28)

A recent study has reported that a series of 8-benzyloxycaffeines are potent and reversible inhibitors of both human monoamine oxidase (MAO) isoforms, MAO-A and -B. In an attempt to discover additional caffeine derivatives with potent MAO inhibitory activities, and to contribute to the known structure-activity relationships of MAO inhibition by caffeine derived compounds, the present study investigates the MAO inhibitory potencies of series of 8-phenoxymethylcaffeine and 8-[(phenylsulfanyl)methyl]caffeine derivatives. The results document that the 8-phenoxymethylcaffeine derivatives act as potent reversible inhibitors of MAO-B, with IC50 values ranging from 0.148 to 5.78 μM. In contrast, the 8-[(phenylsulfanyl)methyl]caffeine derivatives were found to be weak inhibitors of MAO-B, with IC50 values ranging from 4.05 to 124 μM. Neither the 8-phenoxymethylcaffeine nor the 8-[(phenylsulfanyl)methyl]caffeine derivatives exhibited high binding affinities for MAO-A. While less potent than the 8-benzyloxycaffeines as MAO-B inhibitors, this study concludes that 8-phenoxymethylcaffeines may act as useful leads for the design of MAO-B selective inhibitors. Such compounds may find application in the therapy of neurodegenerative disorders such as Parkinson's disease. Using molecular docking experiments, this study also proposes possible binding orientations of selected caffeine derivatives in the active sites of MAO-A and -B.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 331-55-5