Welcome to LookChem.com Sign In|Join Free

CAS

  • or

34040-63-6

Post Buying Request

34040-63-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

34040-63-6 Usage

Uses

Methyl 3-(chloromethyl)benzoate

Check Digit Verification of cas no

The CAS Registry Mumber 34040-63-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,4,0,4 and 0 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 34040-63:
(7*3)+(6*4)+(5*0)+(4*4)+(3*0)+(2*6)+(1*3)=76
76 % 10 = 6
So 34040-63-6 is a valid CAS Registry Number.
InChI:InChI=1/C9H9ClO2/c1-12-9(11)8-4-2-3-7(5-8)6-10/h2-5H,6H2,1H3

34040-63-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name Methyl 3-(chloromethyl)benzoate

1.2 Other means of identification

Product number -
Other names 3-Chlormethyl-benzoesaeure-methylester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:34040-63-6 SDS

34040-63-6Relevant articles and documents

Visible Light-Catalyzed Benzylic C-H Bond Chlorination by a Combination of Organic Dye (Acr+-Mes) and N-Chlorosuccinimide

Xiang, Ming,Zhou, Chao,Yang, Xiu-Long,Chen, Bin,Tung, Chen-Ho,Wu, Li-Zhu

, p. 9080 - 9087 (2020/08/14)

By combining "N-chlorosuccinimide (NCS)"as the safe chlorine source with "Acr+-Mes"as the photocatalyst, we successfully achieved benzylic C-H bond chlorination under visible light irradiation. Furthermore, benzylic chlorides could be converted to benzylic ethers smoothly in a one-pot manner by adding sodium methoxide. This mild and scalable chlorination method worked effectively for diverse toluene derivatives, especially for electron-deficient substrates. Careful mechanistic studies supported that NCS provided a hydrogen abstractor "N-centered succinimidyl radical,"which was responsible for the cleavage of the benzylic C-H bond, relying on the reducing ability of Acr?-Mes.

N -Hydroxyphthalimide/benzoquinone-catalyzed chlorination of hydrocarbon C-H bond using N -chlorosuccinimide

Li, Zi-Hao,Fiser, Béla,Jiang, Biao-Lin,Li, Jian-Wei,Xu, Bao-Hua,Zhang, Suo-Jiang

supporting information, p. 3403 - 3408 (2019/04/01)

The direct chlorination of C-H bonds has received considerable attention in recent years. In this work, a metal-free protocol for hydrocarbon C-H bond chlorination with commercially available N-chlorosuccinimide (NCS) catalyzed by N-hydroxyphthalimide (NHPI) with 2,3-dicyano-5,6-dichlorobenzoquinone (DDQ) functioning as an external radical initiator is presented. Aliphatic and benzylic substituents and also heteroaromatic ones were found to be well tolerated. Both the experiments and theoretical analysis indicate that the reaction goes through a process wherein NHPI functions as a catalyst rather than as an initiator. On the other hand, the hydrogen abstraction of the C-H bond conducted by a PINO species rather than the highly reactive N-centered radicals rationalizes the high chemoselectivity of the monochlorination obtained by this protocol as the latter is reactive towards the C(sp3)-H bonds of the monochlorides. The present results could hold promise for further development of a nitroxy-radical system for the highly selective functionalization of the aliphatic and benzylic hydrocarbon C-H.

Mild Aliphatic and Benzylic Hydrocarbon C-H Bond Chlorination Using Trichloroisocyanuric Acid

Combe, Sascha H.,Hosseini, Abolfazl,Parra, Alejandro,Schreiner, Peter R.

, p. 2407 - 2413 (2017/03/11)

We present the controlled monochlorination of aliphatic and benzylic hydrocarbons with only 1 equiv of substrate at 25-30 °C using N-hydroxyphthalimide (NHPI) as radical initiator and commercially available trichloroisocyanuric acid (TCCA) as the chlorine source. Catalytic amounts of CBr4 reduced the reaction times considerably due to the formation of chain-carrying ·CBr3 radicals. Benzylic C-H chlorination affords moderate to good yields for arenes carrying electron-withdrawing (50-85%) or weakly electron-donating groups (31-73%); cyclic aliphatic substrates provide low yields (24-38%). The products could be synthesized on a gram scale followed by simple purification via distillation. We report the first direct side-chain chlorination of 3-methylbenzoate affording methyl 3-(chloromethyl)benzoate, which is an important building block for the synthesis of vasodilator taprostene.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 34040-63-6