Welcome to LookChem.com Sign In|Join Free

CAS

  • or

35082-00-9

Post Buying Request

35082-00-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

35082-00-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 35082-00-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,5,0,8 and 2 respectively; the second part has 2 digits, 0 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 35082-00:
(7*3)+(6*5)+(5*0)+(4*8)+(3*2)+(2*0)+(1*0)=89
89 % 10 = 9
So 35082-00-9 is a valid CAS Registry Number.

35082-00-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name N-butyl-N-phenylformamide

1.2 Other means of identification

Product number -
Other names Formanilide,N-butyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:35082-00-9 SDS

35082-00-9Downstream Products

35082-00-9Relevant articles and documents

Catalyst-free photoinduced selective oxidative C(sp3)-C(sp3) bond cleavage in arylamines

Duan, Wentao,Lian, Qi,Wang, Songping,Wei, Wentao,Zhou, Jingwei

supporting information, p. 3261 - 3267 (2021/05/21)

Due to the directional nature of sp3-hybridized orbitals and the absence of π-orbitals, the oxidative cleavage of the kinetically and thermodynamically stable C(sp3)-C(sp3) bond is extremely difficult and remains scarcely explored. In this work, under the double argument of quantum mechanics (QM) computations and meticulous experiments on our well-designed C-C single bond cleavage mechanism, we discovered a means of photoinduced selective oxidative C(sp3)-C(sp3) bond cleavage in arylamines, easily achieved by simple visible light irradiation using O2as a benign oxidant under very mild conditions. The utility of our methodology was demonstrated by the C(sp3)-C(sp3) bond cleavage in morpholine/piperazine arylamines with excellent functional group tolerance. Importantly, our methodology is noteworthy, not only in that it does not require any catalysts, but also in that it provides valuable possibilities for the scalable functionalization of clinical drugs and natural products.

Direct Synthesis of N,N-Disubstituted Formamides by Oxidation of Imines Using an HFIP/UHP System

Llopis, Natalia,Gisbert, Patricia,Baeza, Alejandro

, p. 11072 - 11079 (2020/10/12)

The straightforward synthesis of N,N-disubstituted formamides using a combination of 1,1,1,3,3,3-hexafluoroispropanol (HFIP) and H2O2 is described. The unique features of HFIP allowed the utilization of a green oxidant such as H2O2, and the products, arising from an oxidation-rearrangement sequence, were obtained in good to high yields under smooth reaction conditions.

Tetracoordinate borates as catalysts for reductive formylation of amines with carbon dioxide

Du, Chen-Xia,Huang, Zijun,Jiang, Xiaolin,Li, Yuehui,Makha, Mohamed,Wang, Fang,Zhao, Dongmei

supporting information, p. 5317 - 5324 (2020/09/17)

We report sodium trihydroxyaryl borates as the first robust tetracoordinate organoboron catalysts for reductive functionalization of CO2. These catalysts, easily synthesized from condensing boronic acids with metal hydroxides, activate main group element-hydrogen (E-H) bonds efficiently. In contrast to BX3 type boranes, boronic acids and metal-BAr4 salts, under transition metal-free conditions, sodium trihydroxyaryl borates exhibit high reactivity of reductive N-formylation toward a variety of amines (106 examples), including those with functional groups such as ester, olefin, hydroxyl, cyano, nitro, halogen, MeS-, ether groups, etc. The over-performance to catalyze formylation of challenging pyridyl amines affords a promising alternative method to the use of traditional formylation reagents. Mechanistic investigation supports electrostatic interactions as the key for Si/B-H activation, enabling alkali metal borates as versatile catalysts for hydroborylation, hydrosilylation, and reductive formylation/methylation of CO2.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 35082-00-9