Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4026-34-0

Post Buying Request

4026-34-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4026-34-0 Usage

Chemical compound

1-O,2-O,3-O,4-O-Tetraacetyl-α-D-lyxopyranose is a chemical compound derived from α-D-lyxose.

Building block

It is commonly used in organic chemistry as a building block for the synthesis of various compounds.

Acetylation

The "1-O,2-O,3-O,4-O" prefix indicates that all four hydroxyl groups of the α-D-lyxopyranose molecule have been acetylated.

Stability

Acetylation makes the compound more stable and easier to handle in reactions.

Protecting group

It is often used as a protecting group for hydroxyl groups in organic synthesis.

Precursor for sugar derivatives

The compound serves as a precursor for the preparation of other sugar derivatives.

Altered chemical properties

The acetyl groups provide different chemical properties compared to the original sugar molecule.

Diverse applications

The compound is useful for a wide range of chemical reactions and applications.

Check Digit Verification of cas no

The CAS Registry Mumber 4026-34-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,0,2 and 6 respectively; the second part has 2 digits, 3 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 4026-34:
(6*4)+(5*0)+(4*2)+(3*6)+(2*3)+(1*4)=60
60 % 10 = 0
So 4026-34-0 is a valid CAS Registry Number.

4026-34-0Relevant articles and documents

Synthesis and biological evaluation of 3β-O-neoglycosides of caudatin and its analogues as potential anticancer agents

Li, Xiao-San,Chen, Tang-Ji,Xu, Zhi-Peng,Long, Juan,He, Miao-Ying,Zhan, He-Hui,Zhuang, Hai-Cai,Wang, Qi-Lin,Liu, Li,Yang, Xue-Mei,Tang, Jin-Shan

, (2021/12/30)

In order to study the structure–activity relationship (SAR) of C21-steroidal glycosides toward human cancer cell lines and explore more potential anticancer agents, a series of 3β-O-neoglycosides of caudatin and its analogues were synthesized. The results revealed that most of peracetylated 3β-O-monoglycosides demonstrated moderate to significant antiproliferative activities against four human cancer cell lines (MCF-7, HCT-116, HeLa, and HepG2). Among them, 3β-O-(2,3,4-tri-O-acetyl-β-L-glucopyranosyl)-caudatin (2k) exhibited the highest antiproliferative activity aganist HepG2 cells with an IC50 value of 3.11 μM. Mechanical studies showed that compound 2k induced both apoptosis and cell cycle arrest at S phase in a dose dependent manner. Overall, these present findings suggested that glycosylation is a promising scaffold to improve anticancer activity for naturally occurring C21-steroidal aglycones, and compound 2k represents a potential anticancer agent deserved further investigation.

Synthesis of podophyllotoxin-glycosyl triazoles via click protocol mediated by silver (I)-N-heterocyclic carbenes and their anticancer evaluation as topoisomerase-II inhibitors

Nerella, Srinivas,Kankala, Shravankumar,Gavaji, Brahmeshwari

supporting information, p. 9 - 16 (2019/06/27)

Herein we report the regioselective synthesis of podophyllotoxin-Glycosyl triazole hybrids catalysed by Ag(I)-N-heterocyclic carbene (Ag(I)-NHC) in a short reaction time (~30 min) at ambient conditions. In principle, it is the first report of Click alkyne-azide cycloaddition catalysed by Ag(I)-NHC catalyst and moreover, this new methodology yielded good results when compared with traditional CuAAC in terms of reaction time and selectivity. The synthesised compounds were further explored for in vitro anticancer activity against four human cancer cell lines Du145, HeLa, A-549, and MCF-7 and found that these synthesised compounds possess significant anticancer activity. Further, the compounds 5a and 5e were identified as promising leads due to their better activity across all cell lines than that of the standard drug etoposide. Molecular docking studies of 5a & 5e with DNA Topoisomerase-II were revealed that the free energy calculations of active compounds were in good agreement with observed IC50 values.

Total Synthesis of (+)-Erogorgiaene and the Pseudopterosin A?F Aglycone via Enantioselective Cobalt-Catalyzed Hydrovinylation

Movahhed, Sohajl,Westphal, Julia,Kempa, Alexander,Schumacher, Christian Eric,Sperlich, Julia,Neud?rfl, J?rg-Martin,Teusch, Nicole,Hochgürtel, Matthias,Schmalz, Hans-Günther

supporting information, p. 11574 - 11579 (2021/07/02)

Due to their pronounced bioactivity and limited availability from natural resources, metabolites of the soft coral Pseudopterogorgia elisabethae, such as erogorgiaene and the pseudopterosines, represent important target molecules for chemical synthesis. We have now developed a particularly short and efficient route towards these marine diterpenes exploiting an operationally convenient enantioselective cobalt-catalyzed hydrovinylation as the chirogenic step. Other noteworthy C?C bond forming transformations include diastereoselective Lewis acid-mediated cyclizations, a Suzuki coupling and a carbonyl ene reaction. Starting from 4-methyl-styrene the anti-tubercular agent (+)-erogorgiaene (>98 % ee) was prepared in only 7 steps with 46 % overall yield. In addition, the synthesis of the pseudopterosin A aglycone was achieved in 12 steps with 30 % overall yield and, surprisingly, was found to exhibit a similar anti-inflammatory activity (inhibition of LPS-induced NF-κB activation) as a natural mixture of pseudopterosins A?D or iso-pseudopterosin A, prepared by β-D-xylosylation of the synthetic aglycone.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4026-34-0