Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4114-74-3

Post Buying Request

4114-74-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4114-74-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 4114-74-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,1,1 and 4 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 4114-74:
(6*4)+(5*1)+(4*1)+(3*4)+(2*7)+(1*4)=63
63 % 10 = 3
So 4114-74-3 is a valid CAS Registry Number.
InChI:InChI=1/C18H34O3/c1-2-3-4-5-6-8-11-14-17(19)15-12-9-7-10-13-16-18(20)21/h2-16H2,1H3,(H,20,21)

4114-74-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 9-Oxooctadecanoic acid

1.2 Other means of identification

Product number -
Other names 9-keto-octadec-10E,12Z-dienoic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4114-74-3 SDS

4114-74-3Relevant articles and documents

A keto fatty acid from Smilax macrophylla seed oil

Daulatabad,Bhat,Jamkhandi

, p. 889 - 890 (1996)

A hitherto unknown keto fatty acid, 9-keto-octadec-cis-13-enoic acid, has been isolated from Smilax macrophylla seed oil in appreciable amounts (26.03%). Its identification was based on chemical and spectroscopic evidence.

A General Approach to Intermolecular Olefin Hydroacylation through Light-Induced HAT Initiation: An Efficient Synthesis of Long-Chain Aliphatic Ketones and Functionalized Fatty Acids

Guin, Joyram,Paul, Subhasis

supporting information, p. 4412 - 4419 (2021/02/05)

Herein, an operationally simple, environmentally benign and effective method for intermolecular radical hydroacylation of unactivated substrates by employing photo-induced hydrogen atom transfer (HAT) initiation is described. The use of commercially available and inexpensive photoinitiators (Ph2CO and NHPI) makes the process attractive. The olefin hydroacylation protocol applies to a wide array of substrates bearing numerous functional groups and many complex structural units. The reaction proves to be scalable (up to 5 g). Different functionalized fatty acids, petrochemicals and naturally occurring alkanes can be synthesized with this protocol. A radical chain mechanism is implicated in the process.

NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Part III: Studies on keto esters and acids

Afri, Michal,Alexenberg, Carmit,Aped, Pinchas,Bodner, Efrat,Cohen, Sarit,Ejgenburg, Michal,Eliyahu, Shlomi,Gilinsky-Sharon, Pessia,Harel, Yifat,Naqqash, Miriam E.,Porat, Hani,Ranz, Ayala,Frimer, Aryeh A.

, p. 105 - 118 (2015/02/19)

The development of "molecular rulers" would allow one to quantitatively locate the penetration depth of intercalants within lipid bilayers. To this end, an attempt was made to correlate the 13C NMR chemical shift of polarizable "reporter" carbons (e.g., carbonyls) of intercalants within DMPC liposomal bilayers - with the polarity it experiences, and with its Angstrom distance from the interface. This requires families of molecules with two "reporter carbons" separated by a known distance, residing at various depths/polarities within the bilayer. For this purpose, two homologous series of dicarbonyl compounds, methyl n-oxooctadecanoates and the corresponding n-oxooctadecanoic acids (n = 4-16), were synthesized. To assist in assignment and detection several homologs in each system were prepared 13C-enriched in both carbonyls. Within each family, the number of carbons and functional groups remains the same, with the only difference being the location of the second ketone carbonyl along the fatty acid chain. Surprisingly, the head groups within each family are not anchored near the lipid-water interface, nor are they even all located at the same depth. Nevertheless, using an iterative best fit analysis of the data points enables one to obtain an exponential curve. The latter gives substantial insight into the correlation between polarity (measured in terms of the Reichardt polarity parameter, ET(30)) and penetration depth into the liposomal bilayer. Still missing from this curve are data points in the moderate polarity range.

PROCESS FOR THE SYNTHESIS OF KETONES FROM INTERNAL ALKENES

-

Page/Page column 0122; 0135; 0149, (2014/07/22)

The present invention is directed to methods for oxidizing internal olefins to ketones. In various embodiments, each method comprising contacting an organic substrate, having an initial internal olefin, with a mixture of (a) a biscationic palladium salt; and (b) an oxidizing agent; dissolved or dispersed in a solvent system to form a reaction mixture, said solvent system comprising at least one C2-6 carbon nitrile and optionally at least one secondary alkyl amide, said method conducted under conditions sufficient to convert at least 50 mol % of the initial internal olefin to a ketone, said ketone positioned on a carbon of the initial internal olefin. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed oil derivatives and a bioactive natural product are described.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4114-74-3