Welcome to LookChem.com Sign In|Join Free

CAS

  • or

41728-14-7

Post Buying Request

41728-14-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

41728-14-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 41728-14-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 4,1,7,2 and 8 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 41728-14:
(7*4)+(6*1)+(5*7)+(4*2)+(3*8)+(2*1)+(1*4)=107
107 % 10 = 7
So 41728-14-7 is a valid CAS Registry Number.

41728-14-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 6-hydroxy-2-methyl-2H-pyran-3(6H)-one

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:41728-14-7 SDS

41728-14-7Relevant articles and documents

2, 4, 5-Trideoxyhexopyranosides Derivatives of 4’-Demethylepipodophyllotoxin: De novo Synthesis and Anticancer Activity

Cai, Rui,Li, Yu,Lu, Yapeng,Zhao, Yu,Zhu, Li

, p. 130 - 139 (2022/03/09)

Background: Podophyllotoxin is a natural lignan which possesses anticancer and antiviral activities. Etoposide and teniposide are semisynthetic glycoside derivatives of podophyllotoxin and are increasingly used in cancer medicine. Objective: The present work aimed to design and synthesize a series of 2, 4, 5-trideoxyhexopyrano-sides derivatives of 4’-demethylepipodophyllotoxin as novel anticancer agents. Methods: A divergent de novo synthesis of 2, 4, 5-trideoxyhexopyranosides derivatives of 4’-demethylepipodophyllotoxin has been established via palladium-catalyzed glycosylation. The abili-ties of synthesized glycosides to inhibit the growth of A549, HepG2, SH-SY5Y, KB/VCR and HeLa cancer cells were investigated by MTT assay. Flow cytometric analysis of cell cycle with propidium iodide DNA staining was employed to observe the effect of compound 5b on cancer cell cycle. Results: Twelve D and L monosaccharide derivatives 5a-5l have been efficiently synthesized in three steps from various pyranone building blocks employing de novo glycosylation strategy. D-monosaccharide 5b showed the highest cytotoxicity on five cancer cell lines with the IC50 values ranging from 0.9 to 6.7 μM. It caused HepG2 cycle arrest at G2/M phase in a concentration-dependent manner. Conclusion: The present work leads to the development of novel 2, 4, 5-trideoxyhexopyranosides derivatives of 4’-demethylepipodophyllotoxin. The biological results suggest that the replacement of the glucosyl moiety of etoposide with 2, 4, 5-trideoxyhexopyranosyl is favorable to their cytotoxic-ity. D-monosaccharide 5b was observed to cause HepG2 cycle arrest at the G2/M phase in a concen-tration-dependent manner.

Enantioselective 1,3-Dipolar [6+4] Cycloaddition of Pyrylium Ions and Fulvenes towards Cyclooctanoids

McLeod, David,Cherubini-Celli, Alessio,Sivasothirajah, Nisanhi,McCulley, Christina H.,Christensen, Mette Louise,J?rgensen, Karl Anker

supporting information, p. 11417 - 11422 (2020/08/06)

Organocatalytic enantioselective 1,3-dipolar [6+4] cycloadditions of pyrylium ion intermediates with fulvenes promoted by a chiral primary amine catalyst have been developed to proceed in moderate to good yields and high enantioselectivities. The resultant chiral bicyclo[6.3.0]undecane scaffold containing a transannular bridging ether is densely functionalised providing a rigid scaffold for further manipulations. Computational studies give important insights into the role of the primary amine catalyst. Analysis of the reaction shows that the catalytic reaction proceeds in a step-wise manner and rationalises the stereochemical outcome of the reaction. Several stereoselective complexity-generating transformations, facilitated by the diverse functional groups and transannular bridge, are presented, highlighting the versatility of the core towards a number of the cyclooctanoid natural products.

A solvent-free catalytic protocol for the Achmatowicz rearrangement

Zhao, Guodong,Tong, Rongbiao

supporting information, p. 64 - 68 (2019/01/11)

Reported here is the development of an environmentally friendly catalytic (KBr/oxone) and solvent-free protocol for the Achmatowicz rearrangement (AchR). Different from all previous methods is that the use of chromatographic alumina (Al2O3) allows AchR to proceed smoothly in the absence of any organic solvent and therefore considerably facilitates the subsequent workup and purification with minimal environmental impacts. Importantly, this protocol allows for scaling up (from milligram to gram), recycling of the Al2O3, and integrating with other reactions in a one-pot sequential manner.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 41728-14-7