Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4541-87-1

Post Buying Request

4541-87-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4541-87-1 Usage

Description

(2R,3S)-2-methyl-3-phenyloxirane, also known as styrene oxide, is a colorless liquid with a faint sweet odor and belongs to the class of oxiranes or epoxy compounds. It is a highly reactive compound that can undergo various chemical reactions, such as ring-opening reactions and polymerization, making it a versatile starting material for the synthesis of numerous organic compounds.

Uses

Used in Pharmaceutical Industry:
(2R,3S)-2-methyl-3-phenyloxirane is used as an intermediate in the production of various pharmaceuticals for its ability to undergo various chemical reactions, enabling the synthesis of a wide range of organic compounds.
Used in Plastics Industry:
(2R,3S)-2-methyl-3-phenyloxirane is used as an intermediate in the production of various plastics due to its versatility in undergoing chemical reactions, allowing for the creation of different types of plastic materials.
Used in Resins Industry:
(2R,3S)-2-methyl-3-phenyloxirane is used as an intermediate in the production of various resins for its ability to participate in various chemical reactions, enabling the synthesis of a wide range of organic compounds.
It is important to handle (2R,3S)-2-methyl-3-phenyloxirane with care, as it can pose health hazards and is considered a potential carcinogen.

Check Digit Verification of cas no

The CAS Registry Mumber 4541-87-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,5,4 and 1 respectively; the second part has 2 digits, 8 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 4541-87:
(6*4)+(5*5)+(4*4)+(3*1)+(2*8)+(1*7)=91
91 % 10 = 1
So 4541-87-1 is a valid CAS Registry Number.

4541-87-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (1R,2R)-trans-2-(tertbutoxycarbonylamino)cyclopentanol

1.2 Other means of identification

Product number -
Other names (1R,2R)-2-(N-t-butyloxycarbonylamino)-cyclopentanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4541-87-1 SDS

4541-87-1Relevant articles and documents

Asymmetric Epoxidation of Olefins Catalyzed by Substituted Aminobenzimidazole Manganese Complexes Derived from L-Proline

Tian, Jing,Lin, Jin,Zhang, Jisheng,Xia, Chungu,Sun, Wei

supporting information, p. 593 - 600 (2021/11/16)

A family of manganese complexes [Mn(Rpeb)(OTf)2] (peb=1-(1-ethyl-1H-benzo[d]imidazol-2-yl)-N-((1-((1-ethyl-1H-benzo[d]imidazol-2-yl)methyl) pyrrolidin-2-yl)methyl)-N-methylmethanamine)) derived from L-proline has been synthesized and characterized, where R refers to the group at the diamine backbone. X-ray crystallographic analyses indicate that all the manganese complexes [Mn(Rpeb)(OTf)2] exhibit cis-α topology. These types of complexes are shown to catalyze the asymmetric epoxidation of olefins employing H2O2 as a terminal oxidant with up to 96% ee. Obviously, the R group of the diamine backbone can influence the catalytic activity and enantioselectivity in the asymmetric epoxidation of olefins. In particular, Mn(i-Prpeb)(OTf)2 bearing an isopropyl arm, cannot catalyze the epoxidation reaction with H2O2 as the oxidant. However, when PhI(OAc)2 is used as the oxidant instead, all the manganese complexes including Mn(i-Prpeb)(OTf)2 can promote the epoxidation reactions efficiently. Taken together, these results indicate that isopropyl substitution on the Rpeb ligand inhibits the formation of active Mn(V)-oxo species in the H2O2/carboxylic acid system via an acid-assisted pathway.

A stand-alone cobalt bis(dicarbollide) photoredox catalyst epoxidates alkenes in water at extremely low catalyst load

Guerrero, Isabel,Romero, Isabel,Teixidor, Francesc,Vi?as, Clara

supporting information, p. 10123 - 10131 (2021/12/27)

The cobalt bis(dicarbollide) complex, Na[3,3′-Co(η5-1,2-C2B9H11) (Na[1]), is an effective photoredox catalyst for the oxidation of alkenes to epoxides in water. Advantageous features of Na[1] include its lack of photoluminescence, high solubility and surfactant behavior in aqueous media, as well as the donor ability of the carborane ligand and high oxidizing power of the Co4+/3+ couple. These features differentiate it from the well-known and widely used photosensitizer tris (2,2′-bipyridine) ruthenium(ii) ([Ru(bpy)3]2+), which also participates in electron transfer through an outer sphere mechanism. A comparison of the catalytic performance of [Ru(bpy)3]2+ with Na[1] for alkene photo-oxidation is fully in favor of Na[1], as the former shows very low or null efficiency. With a catalyst loading of 0.1 mol% conversions between 65-97% have been obtained in short reaction times, 15 minutes, with moderate selectivity for the corresponding epoxide, due to the formation of side products as diols. But when the catalyst loading is reduced to 0.01 mol%, the selectivity for the corresponding epoxide increased considerably, being the only compound formed after 15 minutes of reaction (selectivity >99%). High TON values have been obtained (TON = 8500) for the epoxidation of aromatic and aliphatic alkenes in water. We have verified that Na[3,3′-Co(η5-1,2-C2B9H11)2] acts as a photocatalyst in both the epoxidation of alkenes and in their hydroxylation in aqueous medium with a higher rate for epoxidation than for hydroxylation. Preliminary photooxidation tests using methyl oleate as the substrate led to the selective epoxidation of the double bond. These results represent a promising starting point for the development of practical methods for the processing of unsaturated fatty acids, such as the valorisation of animal fat waste using this sustainable photoredox catalyst. This journal is

Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2

Borges Regitano, Jussara,Deligiannakis, Yiannis,Gemenetzi, Aikaterini,Louloudi, Maria,Mavrogiorgou, Alexandra,Pierri, Leticia

, (2020/04/20)

A novel type of hybrid catalytic materials [MnII-L?BC] has been developed using biochar (BC) as support material for covalent grafting of a MnII Schiff-base catalyst (MnII-L). The hybrid [MnII-L?BC] materials have been evaluated for an important catalytic process, epoxidation of olefins using H2O2 as oxidant. A number of different substrates were used, with cyclohexene achieving the highest yields. When compared to the non-grafted, homogeneous MnII-L, the hybrid catalysts [MnII-L?BC] show a significant enhancement of the catalytic efficiency i.e. as documented by the increase of Turnover Numbers (TONs) (826 for [MnII-L-SS550ox] and 822 for [MnII-L-SW550ox]) and Turnover Frequencies (TOFs) (551 h?1 for [MnII-L-SS550ox] and 411 h?1 for [MnII-L-SW550ox]). The interfacial catalytic mechanism and the role of the BC support have been analyzed by Raman and Electron Paramagnetic Resonance spectroscopies. Based on these data we discuss a mechanism where the high efficiency of the hybrid materials involves the biochar carbon layers acting as promoters of the substrate and products kinetics. To a broader context, this work exemplifies that biochar-based hybrid materials are potent for oxidative catalysis technologies.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4541-87-1