Welcome to LookChem.com Sign In|Join Free

CAS

  • or

473-75-6

Post Buying Request

473-75-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

473-75-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 473-75-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,7 and 3 respectively; the second part has 2 digits, 7 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 473-75:
(5*4)+(4*7)+(3*3)+(2*7)+(1*5)=76
76 % 10 = 6
So 473-75-6 is a valid CAS Registry Number.
InChI:InChI=1S/C5H13NO/c1-4(2)5(6)3-7/h4-5,7H,3,6H2,1-2H3

473-75-6Relevant articles and documents

Immobilization of (l)-valine and (l)-valinol on SBA-15 nanoporous silica and their application as chiral heterogeneous ligands in the Cu-catalyzed asymmetric allylic oxidation of alkenes

Samadi, Saadi,Ashouri, Akram,Rashid, Hersh I,Majidian, Shiva,Mahramasrar, Mahsa

supporting information, p. 17630 - 17641 (2021/10/04)

SBA-15 nanoporous silica was synthesized by hydrothermal method using P123 surfactant and tetraethoxyortosilicate in acidic condition and then functionalized by 3-chloropropyltrimethoxysilane. Next, by immobilization of chiral amino acid (S)-2-amino-3-methyl butanoic acid (l-valine) and chiral amino alcohol (S)-2-amino-3-methylbutane-1-ol (l-valinol), preparedviathe reduction ofl-valine by NaBH4/I2in THF, on functionalized-SBA-15, chiral heterogeneous ligands AL*-i-Pr-SBA-15 and AA*-i-Pr-SBA-15 were prepared and characterized by FT-IR, XRD, TGA, EDX, SEM, BET-BJH techniques. The asymmetric allylic oxidation of alkenes was done using copper-complexes of these ligands and the as-synthesized peresters. The reactions were optimized by varying various parameters such as temperature, solvent, amount of chiral heterogeneous ligand, as well as the type and amount of copper salt. Under optimized conditions, 6 mg of AL*-i-Pr-SBA-15 and 3.2 mol% of Cu(CH3CN)4PF6in acetonitrile at 50 °C, the chiral allylic ester was obtained with 80% yield and 39% enantiomeric excess in 24 h. The recyclability of the chiral heterogeneous catalysts was also evaluated without significant reduction in the reaction results up to three runs.

Enantioselective Cascade Biocatalysis for Deracemization of Racemic β-Amino Alcohols to Enantiopure (S)-β-Amino Alcohols by Employing Cyclohexylamine Oxidase and ω-Transaminase

Zhang, Jian-Dong,Chang, Ya-Wen,Dong, Rui,Yang, Xiao-Xiao,Gao, Li-Li,Li, Jing,Huang, Shuang-Ping,Guo, Xing-Mei,Zhang, Chao-Feng,Chang, Hong-Hong

, p. 124 - 128 (2020/09/21)

Optically active β-amino alcohols are very useful chiral intermediates frequently used in the preparation of pharmaceutically active substances. Here, a novel cyclohexylamine oxidase (ArCHAO) was identified from the genome sequence of Arthrobacter sp. TYUT010-15 with the R-stereoselective deamination activity of β-amino alcohol. ArCHAO was cloned and successfully expressed in E. coli BL21, purified and characterized. Substrate-specific analysis revealed that ArCHAO has high activity (4.15 to 6.34 U mg?1 protein) and excellent enantioselectivity toward the tested β-amino alcohols. By using purified ArCHAO, a wide range of racemic β-amino alcohols were resolved, (S)-β-amino alcohols were obtained in >99 % ee. Deracemization of racemic β-amino alcohols was conducted by ArCHAO-catalyzed enantioselective deamination and transaminase-catalyzed enantioselective amination to afford (S)-β-amino alcohols in excellent conversion (78–94 %) and enantiomeric excess (>99 %). Preparative-scale deracemization was carried out with 50 mM (6.859 g L?1) racemic 2-amino-2-phenylethanol, (S)-2-amino-2-phenylethanol was obtained in 75 % isolated yield and >99 % ee.

CO2 Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst

Chidambaram, Arunraj,Cui, Xinjiang,Dyson, Paul J.,Fei, Zhaofu,Nguyen, Tu N.,Shyshkanov, Serhii,Stylianou, Kyriakos C.

, p. 16371 - 16375 (2020/07/13)

Methanation of carbon dioxide (CO2) is attractive within the context of a renewable energy refinery. Herein, we report an indirect methanation method that harnesses amino alcohols as relay molecules in combination with a catalyst comprising ruthenium nanoparticles (NPs) immobilized on a Lewis acidic and robust metal–organic framework (MOF). The Ru NPs are well dispersed on the surface of the MOF crystals and have a narrow size distribution. The catalyst efficiently transforms amino alcohols to oxazolidinones (upon reaction with CO2) and then to methane (upon reaction with hydrogen), simultaneously regenerating the amino alcohol relay molecule. This protocol provides a sustainable, indirect way for CO2 methanation as the process can be repeated multiple times.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 473-75-6