Welcome to LookChem.com Sign In|Join Free

CAS

  • or

474097-69-3

Post Buying Request

474097-69-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

474097-69-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 474097-69-3 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 4,7,4,0,9 and 7 respectively; the second part has 2 digits, 6 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 474097-69:
(8*4)+(7*7)+(6*4)+(5*0)+(4*9)+(3*7)+(2*6)+(1*9)=183
183 % 10 = 3
So 474097-69-3 is a valid CAS Registry Number.

474097-69-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name tert-butyl (E)-3-(2-methoxyphenyl)prop-2-enoate

1.2 Other means of identification

Product number -
Other names tert-butyl (E)-3-(2-methoxyphenyl)propenoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:474097-69-3 SDS

474097-69-3Relevant articles and documents

Non-Chelate-Assisted Palladium-Catalyzed Aerobic Oxidative Heck Reaction of Fluorobenzenes and Other Arenes: When Does the C?H Activation Need Help?

Albéniz, Ana C.,Villalba, Francisco

supporting information, p. 4795 - 4804 (2021/09/06)

The pyridone fragment in the ligand [2, 2’-bipyridin]-6(1H)-one (bipy-6-OH) enables the oxidative Heck reaction of simple arenes with oxygen as the sole oxidant and no redox mediator. Arenes with either electron-donating or electron-withdrawing groups can be functionalized in this way. Experimental data on the reaction with toluene as the model arene shows that the C?H activation step is turnover limiting and that the ligand structure is crucial to facilitate the reaction, which supports the involvement of the pyridone fragment in the C?H activation step. In the case of fluoroarenes, the alkenylation of mono and 1,2-difluoro benzenes requires the presence of bipy-6-OH. In contrast, this ligand is detrimental for the alkenylation of 1,3-difluoro, tri, tetra and pentafluoro benzenes which can be carried out using just [Pd(OAc)2]. This correlates with the acidity of the fluoroarenes, the most acidic undergoing easier C?H activation so other steps of the reaction such as the coordination-insertion of the olefin become kinetically important for polyfluorinated arenes. The use of just a catalytic amount of sodium molybdate as a base proved to be optimal in all these reactions. (Figure presented.).

Mizoroki–Heck Cross-Coupling of Acrylate Derivatives with Aryl Halides Catalyzed by Palladate Pre-Catalysts

Islam, Mohammad Shahidul,Nahra, Fady,Tzouras, Nikolaos V.,Barakat, Assem,Cazin, Catherine S. J,Nolan, Steven P.,Al-Majid, Abdullah Mohammed

supporting information, p. 4695 - 4699 (2019/11/13)

The Mizoroki–Heck (MH) reaction involving aryl halides with various acrylates and acrylamides has been studied using air and moisture-stable imidazolium-based palladate pre-catalysts. These pre-catalysts can be converted into Pd-NHC species (NHC = N-heterocyclic carbene) under catalytic conditions and are capable of facilitating the Mizoroki–Heck reaction of aryl halides with various acrylates. The effects of solvent, catalyst loading, temperature and bases on the reaction outcome have been investigated. Various coupling partners were tolerated under the optimal reaction conditions catalyzed by palladate 1, [SIPr·H][Pd(η3-2-Me-allyl)Cl2]. The efficiency of the optimized synthetic methodology was tested on various aryl halides and substituted acrylates as well as acrylamides. The MH reaction yielded the coupled products in good to excellent isolated yields (up to 98%).

Solid supported palladium(0) nano/microparticle: A ligand-free efficient recyclable heterogeneous catalyst for mono- and β,β-double-Heck reaction

Sharma, Dharminder,Kumar, Sandeep,Shil, Arun K.,Guha, Nitul Ranjan,Bandna,Das, Pralay

supporting information, p. 7044 - 7051 (2013/01/15)

Solid supported palladium nano/microparticles were found to be active catalysts to perform mono- and β,β-double-Heck reactions. Different β-unsubstituted and substituted alkenes including acrylate, methacrylate, crotonate, styrene, acrylonitrile, and acrylamide were investigated successfully for mono- and β,β-double-Heck reactions with aryl iodide under milder reaction condition. One-pot β,β-double-Heck reaction of aryl iodides with α,β-unsaturated ester, amide, nitrile, and styrene derivatives were also performed under standard reaction conditions. Wide functional group tolerance, easy catalyst recovery, and recyclability up to twelve times without significant loss of catalytic activity added extra importance to the present process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 474097-69-3