Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5405-13-0

Post Buying Request

5405-13-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5405-13-0 Usage

General Description

N-benzyl-o-toluidine, also known as N-Benzyl-2-methylaniline, is an organic compound with the chemical formula C15H15N. It is a pale-yellow liquid with a molecular weight of 209.29 g/mol. This chemical is used primarily as an intermediate in the production of various dyes, pigments, and other organic compounds. It is also employed in the manufacturing of pharmaceuticals and as an additive in lubricating oils. N-benzyl-o-toluidine is known to be a skin and eye irritant, and prolonged exposure to it can cause respiratory problems and other adverse health effects. Therefore, proper handling and storage procedures should be followed when dealing with this chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 5405-13-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,4,0 and 5 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 5405-13:
(6*5)+(5*4)+(4*0)+(3*5)+(2*1)+(1*3)=70
70 % 10 = 0
So 5405-13-0 is a valid CAS Registry Number.
InChI:InChI=1/C14H15N/c1-12-7-5-6-10-14(12)15-11-13-8-3-2-4-9-13/h2-10,15H,11H2,1H3

5405-13-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzyl-2-methylaniline

1.2 Other means of identification

Product number -
Other names benzyl-o-tolyl-amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5405-13-0 SDS

5405-13-0Relevant articles and documents

Iron-Catalyzed Oxidative Amination of Benzylic C(sp3)–H Bonds with Anilines

Song, Yan-Ling,Li, Bei,Xie, Zhen-Biao,Wang, Dan,Sun, Hong-Mei

, p. 17975 - 17985 (2021/12/13)

Iron-catalyzed oxidative amination of benzylic C(sp3)–H bonds with anilines bearing electron-withdrawing groups (EWGs) or electron-donating groups (EDGs) is realized based on simple variations of N-substituents on imidazolium cations in novel ionic Fe(III) complexes. The structural modification of the imidazolium cation resulted in regulation of the redox potential and the catalytic performance of the iron metal center. Using DTBP as oxidant, [HItBu][FeBr4] showed the highest catalytic activity for anilines bearing EWGs, while [HIPym][FeBr4] was more efficient for EDG-substituted anilines. This work provides alternative access to benzylamines with the advantages of both a wide substrate scope and iron catalysis.

Synthesis ofN-aryl amines enabled by photocatalytic dehydrogenation

Kim, Jungwon,Kim, Siin,Choi, Geunho,Lee, Geun Seok,Kim, Donghyeok,Choi, Jungkweon,Ihee, Hyotcherl,Hong, Soon Hyeok

, p. 1915 - 1923 (2021/02/22)

Catalytic dehydrogenation (CD)viavisible-light photoredox catalysis provides an efficient route for the synthesis of aromatic compounds. However, access toN-aryl amines, which are widely utilized synthetic moieties,viavisible-light-induced CD remains a significant challenge, because of the difficulty in controlling the reactivity of amines under photocatalytic conditions. Here, the visible-light-induced photocatalytic synthesis ofN-aryl amines was achieved by the CD of allylic amines. The unusual strategy using C6F5I as an hydrogen-atom acceptor enables the mild and controlled CD of amines bearing various functional groups and activated C-H bonds, suppressing side-reaction of the reactiveN-aryl amine products. Thorough mechanistic studies suggest the involvement of single-electron and hydrogen-atom transfers in a well-defined order to provide a synergistic effect in the control of the reactivity. Notably, the back-electron transfer process prevents the desired product from further reacting under oxidative conditions.

Cobalt encapsulated in N?doped graphene sheet for one-pot reductive amination to synthesize secondary amines

Liu, Lin,Li, Wenxiu,Qi, Ran,Zhu, Qingqing,Li, Jing,Fang, Yuzhen,Kong, Xiangjin

, (2021/03/14)

To develop an efficient base-metal reductive amination catalyst for synthesis of secondary amines is still a major challenge. In this study, an efficient N-doped graphene sheet-coated cobalt catalyst (Co@CN-800) was developed through a simple pyrolysis process, which could gave 99.5 % yield of N-benzylaniline by one-pot reductive amination of nitrobenzene with benzaldehyde during at least 5 cycles. Catalyst characterization and control experiments confirmed that the robust catalytic performance of the catalyst is probably due to the synergy effect of in situ generated Co-Nx encapsulated in N?doped graphene layer and appropriate meso-pore structure. Additionally, The substrate adaptability of the catalyst was proved since a variety of corresponding secondary amines were smoothly obtained under relatively mild conditions, which makes the secondary amine synthesis strategy based on Co@CN-800 shows excellent application prospect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5405-13-0