Welcome to LookChem.com Sign In|Join Free

CAS

  • or

58001-94-8

Post Buying Request

58001-94-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

58001-94-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 58001-94-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,8,0,0 and 1 respectively; the second part has 2 digits, 9 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 58001-94:
(7*5)+(6*8)+(5*0)+(4*0)+(3*1)+(2*9)+(1*4)=108
108 % 10 = 8
So 58001-94-8 is a valid CAS Registry Number.

58001-94-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (1S,4S,5S)-bicyclo[2.2.1]hept-2-ene-5-carbaldehyde

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:58001-94-8 SDS

58001-94-8Relevant articles and documents

Method for preparing single-configuration C-2-position-monosubstituted norbornene derivative

-

, (2021/07/01)

The invention discloses a method for preparing a single-configuration C-2-position-monosubstituted norbornene derivative. The method comprises the following steps of: firstly, preparing exo-isomer enriched exo-isomer mixed 5-norbornene-2-carboxylic ester by taking commercial exo-isomer/endoisomer mixed 5-norbornene-2-carboxylic acid and large-steric-hindrance monohydric alcohol as raw materials; separating 5-norbornene-2-carboxylate with a single configuration through common column chromatography separation or fractionation; and finally, preparing the C-2-position-monosubstituted norbornene derivative with the single configuration from the separated 5-norbornene-2-carboxylate with the single configuration. The raw materials used in the invention are easy to obtain, the preparation process is simple, and the C-2-position-monosubstituted norbornene derivative with high purity (greater than 98%) and single configuration can be obtained.

Improving the efficiency of the Diels-Alder process by using flow chemistry and zeolite catalysis

Seghers,Protasova,Mullens,Thybaut,Stevens

supporting information, p. 237 - 248 (2017/08/14)

The industrial application of the Diels-Alder reaction for the atom-efficient synthesis of (hetero)cyclic compounds constitutes an important challenge. Safety and purity concerns, related to the instability of the polymerization prone diene and/or dienophile, limit the scalability of the production capacity of Diels-Alder products in a batch mode. To tackle these problems, the use of a high-pressure continuous microreactor process was considered. In order to increase the yields and the selectivity towards the endo-isomer, commercially available zeolites were used as a heterogeneous catalyst in a microscale packed bed reactor. As a result, a high conversion (≥95%) and endo-selectivity (89:11) were reached for the reaction of cyclopentadiene and methyl acrylate, using a 1:1 stoichiometry. A throughput of 0.87 g h-1 during at least 7 h was reached, corresponding to a 3.5 times higher catalytic productivity and a 14 times higher production of Diels-Alder adducts in comparison to the heterogeneous lab-scale batch process. Catalyst deactivation was hardly observed within this time frame. Moreover, complete regeneration of the zeolite was demonstrated using a straightforward calcination procedure.

Ruthenium Lewis Acid-Catalyzed Asymmetric Diels–Alder Reactions: Reverse-Face Selectivity for α,β-Unsaturated Aldehydes and Ketones

Thamapipol, Sirinporn,Ludwig, Bettina,Besnard, Céline,Saudan, Christophe,Kündig, E. Peter

, p. 774 - 789 (2016/10/17)

Acrolein, methacrolein, methyl vinyl ketone, ethyl vinyl ketone, 3-methyl-3-en-2-one, and divinyl ketone were coordinated to a cationic cyclopentadienyl ruthenium(II) Lewis acid incorporating the electron-poor bidentate BIPHOP–F ligand. Analysis by NOESY and ROESY NMR techniques allowed the determination of conformations of enals and enones present in solution in CD2Cl2. The results were compared to solid-state structures and to the facial selectivities of catalytic asymmetric Diels–Alder reactions with cyclopentadiene. X-Ray structures of four Ru-enal and Ru-enone complexes show the α,β-unsaturated C=O compounds to adopt an anti-s-trans conformation. In solution, enals assume both anti-s-trans and anti-s-cis conformations. An additional conformation, syn-s-trans, is present in enone complexes. Enantioface selectivity in the cycloaddition reactions differs for enals and enones. Reaction products indicate enals to react exclusively in the anti-s-trans conformation, whereas with enones, the major product results from the syn-s-trans conformation. The alkene in s-cis conformations, while present in solution, is shielded and cannot undergo cycloaddition. A syn-s-trans conformation is found in the solid state of the bulky 6,6-dimethyl cyclohexanone-Ru(II) complex. The X-ray structure of divinyl ketone is unique in that the Ru(II) center binds the enone via a η2bond to one of the alkene moieties. In solution, coordination to Ru–C=O oxygen is adopted. A comparison of facial preference is also made to the corresponding indenyl Lewis acids.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 58001-94-8