Welcome to LookChem.com Sign In|Join Free

CAS

  • or

588-07-8

Post Buying Request

588-07-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

588-07-8 Usage

Chemical Properties

BEIGE TO LIGHT GREY FINE CRYSTALLINE POWDER

Uses

3-Chloroacetanilide is a major metabolite of chlorpropham. An acetanilide herbicide derivative.

Check Digit Verification of cas no

The CAS Registry Mumber 588-07-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 8 respectively; the second part has 2 digits, 0 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 588-07:
(5*5)+(4*8)+(3*8)+(2*0)+(1*7)=88
88 % 10 = 8
So 588-07-8 is a valid CAS Registry Number.

588-07-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A14921)  3'-Chloroacetanilide, 98+%   

  • 588-07-8

  • 25g

  • 261.0CNY

  • Detail
  • Alfa Aesar

  • (A14921)  3'-Chloroacetanilide, 98+%   

  • 588-07-8

  • 100g

  • 698.0CNY

  • Detail
  • Alfa Aesar

  • (A14921)  3'-Chloroacetanilide, 98+%   

  • 588-07-8

  • 500g

  • 2646.0CNY

  • Detail

588-07-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 3'-CHLOROACETANILIDE

1.2 Other means of identification

Product number -
Other names 3'-Chloroacetanilide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:588-07-8 SDS

588-07-8Relevant articles and documents

One-Pot Regioselective and Stereoselective Synthesis of C-Glycosyl Amides from Glycals Using Vinyl Azides as Glycosyl Acceptors

Rasool, Faheem,Ahmed, Ajaz,Hussain, Nazar,Yousuf, Syed Khalid,Mukherjee, Debaraj

, p. 4036 - 4039 (2018)

The reaction of glycals containing good leaving groups with aromatic vinyl azides to give α-C-glycosyl amides in good yields is described. Various vinyl azides with different groups undergo the reaction smoothly. In these reactions, an iminodiazonium intermediate is generated by the attack of the vinyl azide onto the glycal under Lewis acid conditions. This undergoes Schmidt-type denitrogenative 1,2-migration to form a nitrilium ion, which, upon hydrolysis, gives the desired C-glycosyl amide.

Hybrid quinoline-thiosemicarbazone therapeutics as a new treatment opportunity for Alzheimer’s disease-synthesis, in vitro cholinesterase inhibitory potential and computational modeling analysis

Alsaab, Hashem O.,Aqsa, Sehar,Asif, Tahira Tasneem,Ibrar, Aliya,Kausar, Naghmana,Khan, Imtiaz,Munir, Rubina,Shahid, Noorma,Younas, Muhammad Tayyab,Zaib, Sumera

, (2021/12/10)

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinolinethiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.

Z-Selective Fluoroalkenylation of (Hetero)Aromatic Systems by Iodonium Reagents in Palladium-Catalyzed Directed C?H Activation

Bényei, Attila,Domján, Attila,Egyed, Orsolya,Gonda, Zsombor,Novák, Zoltán,Sályi, Gerg?,Tóth, Balázs L.

supporting information, (2021/11/09)

The direct and catalytic incorporation of fluorine containing molecular motifs into organic compounds resulting high-value added chemicals represents a rapidly evolving part of synthetic methodologies, thus this area is in the focus of pharmaceutical and agrochemical research. Herein we report a stereoselective procedure for direct fluorovinylation of aromatic and heteroaromatic scaffolds. This methodology development has been realized by palladium-catalyzed ortho C?H activation reaction of aniline derivatives featuring the regioselectivity via directing groups such as secondary of tertiary amides, ureas or ketones. The application of non-symmetrical aryl(fluoroalkenyl)-iodonium salts as fluoroalkenylating agents allowed mild reaction conditions in general for this transformation. The scope and limitations have been thoroughly investigated and the feasibility has been demonstrated by more than 50 examples.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 588-07-8