Welcome to LookChem.com Sign In|Join Free

CAS

  • or

588-67-0

Post Buying Request

588-67-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

588-67-0 Usage

Chemical Properties

Benzyl butyl ether has a sweet, floral, somewhat pungent odor and is used in fruit flavors.

Occurrence

Reported found in mushrooms.

Preparation

Obtained in mixture by heating benzyl alcohol and butyl alcohol in the presence of sulfuric acid or sodium bisulfate.

Check Digit Verification of cas no

The CAS Registry Mumber 588-67-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 8 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 588-67:
(5*5)+(4*8)+(3*8)+(2*6)+(1*7)=100
100 % 10 = 0
So 588-67-0 is a valid CAS Registry Number.
InChI:InChI=1/C11H16O/c1-2-3-9-12-10-11-7-5-4-6-8-11/h4-8H,2-3,9-10H2,1H3

588-67-0 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L11747)  Benzyl n-butyl ether, 97%   

  • 588-67-0

  • 5g

  • 268.0CNY

  • Detail
  • Alfa Aesar

  • (L11747)  Benzyl n-butyl ether, 97%   

  • 588-67-0

  • 25g

  • 1152.0CNY

  • Detail

588-67-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name Benzyl Butyl Ether

1.2 Other means of identification

Product number -
Other names Benzene, (butoxymethyl)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives -> Flavoring Agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:588-67-0 SDS

588-67-0Relevant articles and documents

Electrochemical Study of Phase-Transfer Catalysis Reactions: The Williamson Ether Synthesis

Tan, S. N.,Dryfe, R. A.,Girault, Hubert H.

, p. 231 - 242 (1994)

The transfer properties of the ionic species involved in the Williamson ether synthesis by phase-transfer catalysis were investigated using electrochemical techniques developed for the study of polarised liquid-liquid interfaces.This approach allows the measurement of the apparent partition coefficients of the transferring species.From these data, it is proposed that the role of the phase-transfer catalyst salt in the reaction mechanism is to establish a Galvani distribution potential difference between the two phases which in turn acts as the driving force for transferring the reactive aqueous ions to the organic phase.

Method for hydrogenolysis of halides

-

, (2021/01/11)

The invention discloses a method for hydrogenolysis of halides. The invention discloses a preparation method of a compound represented by a formula I. The preparation method comprises the following step: in a polar aprotic solvent, zinc, H2O and a compound represented by a formula II are subjected to a reaction as shown in the specification, wherein X is halogen; Y is -CHRR or R; hydrogenin H2O exists in the form of natural abundance or non-natural abundance. According to the preparation method, halide hydrogenolysis can be simply, conveniently and efficiently achieved through a simple and mild reaction system, and good functional group compatibility and substrate universality are achieved.

The Guanidine-Promoted Direct Synthesis of Open-Chained Carbonates

Shang, Yuhan,Zheng, Mai,Zhang, Haibo,Zhou, Xiaohai

, p. 933 - 938 (2019/09/30)

In order to reduce CO2 accumulation in the atmosphere, chemical fixation methodologies were developed and proved to be promising. In general, CO2 was turned into cyclic carbonates by cycloaddition with epoxides. However, the cyclic carbonates need to be converted into open-chained carbonates by transesterification for industrial usage, which results in wasted energy and materials. Herein, we report a process catalyzed by tetramethylguanidine (TMG) to afford linear carbonates directly. This process is greener and shows potential for industrial applications.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 588-67-0