Welcome to LookChem.com Sign In|Join Free

CAS

  • or

60470-33-9

Post Buying Request

60470-33-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

60470-33-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 60470-33-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,0,4,7 and 0 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 60470-33:
(7*6)+(6*0)+(5*4)+(4*7)+(3*0)+(2*3)+(1*3)=99
99 % 10 = 9
So 60470-33-9 is a valid CAS Registry Number.

60470-33-9Relevant articles and documents

Late-Stage Intermolecular Allylic C-H Amination

Clark, Joseph R.,Dixon, Charlie F.,Feng, Kaibo,Han, Wei,Ide, Takafumi,Koch, Vanessa,Teng, Dawei,Wendell, Chloe I.,White, M. Christina

supporting information, p. 14969 - 14975 (2021/10/01)

Allylic amination enables late-stage functionalization of natural products where allylic C-H bonds are abundant and introduction of nitrogen may alter biological profiles. Despite advances, intermolecular allylic amination remains a challenging problem due to reactivity and selectivity issues that often mandate excess substrate, furnish product mixtures, and render important classes of olefins (for example, functionalized cyclic) not viable substrates. Here we report that a sustainable manganese perchlorophthalocyanine catalyst, [MnIII(ClPc)], achieves selective, preparative intermolecular allylic C-H amination of 32 cyclic and linear compounds, including ones housing basic amines and competing sites for allylic, ethereal, and benzylic amination. Mechanistic studies support that the high selectivity of [MnIII(ClPc)] may be attributed to its electrophilic, bulky nature and stepwise amination mechanism. Late-stage amination is demonstrated on five distinct classes of natural products, generally with >20:1 site-, regio-, and diastereoselectivity.

Regioselective Epoxidations by Cytochrome P450 3A4 Using a Theobromine Chemical Auxiliary to Predictably Produce N-Protected β- or γ-Amino Epoxides

Polic, Vanja,Cheong, Kin Jack,Hammerer, Fabien,Auclair, Karine

supporting information, p. 3983 - 3989 (2017/11/30)

N-Protected β- and γ-amino epoxides are useful chiral synthons. We report here that the enzyme cytochrome P450 3A4 can catalyze the formation of such compounds in a regio- and stereoselective manner, even in the presence of multiple double bonds or aromatic substituents. To this end, the theobromine chemical auxiliary is used not only to control the selectivity of the enzyme, but also as a masked amine, and to facilitate product recovery. Theobromine predictably directed epoxidation at the double bond of the fourth carbon from the theobromine group. Unlike with most catalysts, the selectivity did not depend on electronic or steric factors but rather on the position of the olefin relative to the theobromine group. (Figure presented.).

Itraconazole Side Chain Analogues: Structure-Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling

Shi, Wei,Nacev, Benjamin A.,Aftab, Blake T.,Head, Sarah,Rudin, Charles M.,Liu, Jun O.

supporting information; experimental part, p. 7363 - 7374 (2011/12/04)

Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure-activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 60470-33-9