Welcome to LookChem.com Sign In|Join Free

CAS

  • or

611-72-3

Post Buying Request

611-72-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

611-72-3 Usage

General Description

DL-Mandelic acid is a type of alpha hydroxy acid that is naturally found in almonds and cherry pits. It is a white, crystalline solid with a strong and characteristic odor. DL-Mandelic acid is used in various industries, including pharmaceuticals, cosmetics, and as a precursor for the production of other chemicals. It is known for its antimicrobial and exfoliating properties, making it a popular ingredient in skincare products for treating acne and aging skin. Additionally, it is also used in the production of medicines for urinary tract infections and as a chiral building block in the synthesis of pharmaceutical drugs.

Check Digit Verification of cas no

The CAS Registry Mumber 611-72-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,1 and 1 respectively; the second part has 2 digits, 7 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 611-72:
(5*6)+(4*1)+(3*1)+(2*7)+(1*2)=53
53 % 10 = 3
So 611-72-3 is a valid CAS Registry Number.
InChI:InChI=1/C8H8O3/c9-7(8(10)11)6-4-2-1-3-5-6/h1-5,7,9H,(H,10,11)

611-72-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name DL-Mandelic acid

1.2 Other means of identification

Product number -
Other names 2-Hydroxy-2-phenylacetic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:611-72-3 SDS

611-72-3Relevant articles and documents

Designing of amino functionalized imprinted polymeric resin for enantio-separation of (±)-mandelic acid racemate

Alhawiti, Aliyah S.,Monier,Elsayed, Nadia H.

, (2021/02/12)

S-Mandelic acid (MA) enantio-selective resinous material functionalized with –NH2 groups has been developed and effectively utilized in chiral separation of (±)-MA racemate solution. S-MA has first combined with the polymerizable p-aminophenol and form the corresponding amide derivative, which was then polymerized with phenol/formalin using HCl as a catalyst. The stereo-selective –NH2 functionalized binding sites were then generated within the resin upon the alkaline degradation of the amide linkages followed by acidic treatments that will expel the resin incorporated S-MA out of the polymeric material to get the S-MA imprinted polymer (S-MAPR). The synthesized S-MA chiral amide derivative along with the developed polymeric resin was investigated by various techniques including FTIR and NMR spectra that confirmed the executed chemical modifications. In addition, the morphological appearance of the obtained resins were observed using SEM images. Moreover, the S-MAPR resin was examined to optimize the enantio-selective separation conditions and the studies indicated that the adsorption reached the highest value at pH 7 and the maximum capacity was 243 ± 1 mg/g. In addition, the chiral separation of (±)-MA racemic solution was successfully executed by the S-MAPR separation column with 55% and 82% enantiomeric excess of R- and S-MA within both the initial loading and recovery eluant solutions, respectively.

Method for synthesizing mandelic acid

-

Paragraph 0032; 0034-0035; 0037-0038; 0040-0041; 0043, (2021/02/06)

The invention relates to the technical field of compound preparation, and provides a method for synthesizing mandelic acid, which comprises the following steps: by using styrene as a basic raw material, trichloroisocyanuric acid as a chlorinating agent an

Expanding the repertoire of nitrilases with broad substrate specificity and high substrate tolerance for biocatalytic applications

Rayavarapu, Pratima,Shah, Shikha,Sunder, Avinash Vellore,Wangikar, Pramod P.

, p. 289 - 296 (2020/05/18)

Enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. Although nitrilases from several sources have been characterized, there exists a scope for identifying broad spectrum nitrilases exhibiting higher substrate tolerance and better thermostability to develop industrially relevant biocatalytic processes. Through genome mining, we have identified nine novel nitrilase sequences from bacteria and evaluated their activity on a broad spectrum of 23 industrially relevant nitrile substrates. Nitrilases from Zobellia galactanivorans, Achromobacter insolitus and Cupriavidus necator were highly active on varying classes of nitriles and applied as whole cell biocatalysts in lab scale processes. Z. galactanivorans nitrilase could convert 4-cyanopyridine to achieve yields of 1.79 M isonicotinic acid within 3 h via fed-batch substrate addition. The nitrilase from A. insolitus could hydrolyze 630 mM iminodiacetonitrile at a fast rate, effecting 86 % conversion to iminodiacetic acid within 1 h. The arylaliphatic nitrilase from C. necator catalysed enantioselective hydrolysis of 740 mM mandelonitrile to (R)-mandelic acid in 4 h. Significantly high product yields suggest that these enzymes would be promising additions to the suite of nitrilases for upscale biocatalytic application.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 611-72-3