Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6127-49-7

Post Buying Request

6127-49-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6127-49-7 Usage

General Description

2-(4-Bromo-phenyl)-1H-indole is a chemical compound that belongs to the indole class of organic compounds. It is a derivative of indole with a substitution of a 4-bromo-phenyl group at the 2-position. 2-(4-BROMO-PHENYL)-1H-INDOLE is commonly used in chemical and pharmaceutical research due to its diverse biological activities and potential therapeutic applications. It has been studied for its potential as an antiviral, anticancer, and anti-inflammatory agent. Additionally, 2-(4-Bromo-phenyl)-1H-indole has also been investigated for its ability to modulate different biological pathways and its potential for use in drug development and as a chemical building block for the synthesis of various heterocyclic compounds.

Check Digit Verification of cas no

The CAS Registry Mumber 6127-49-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,1,2 and 7 respectively; the second part has 2 digits, 4 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 6127-49:
(6*6)+(5*1)+(4*2)+(3*7)+(2*4)+(1*9)=87
87 % 10 = 7
So 6127-49-7 is a valid CAS Registry Number.
InChI:InChI=1/C14H10BrN/c15-12-7-5-10(6-8-12)14-9-11-3-1-2-4-13(11)16-14/h1-9,16H

6127-49-7Relevant articles and documents

One-Pot Asymmetric Oxidative Dearomatization of 2-Substituted Indoles by Merging Transition Metal Catalysis with Organocatalysis to Access C2-Tetrasubstituted Indolin-3-Ones

Zhao, Yong-Long,An, Jian-Xiong,Yang, Fen-Fen,Guan, Xiang,Fu, Xiao-Zhong,Li, Zong-Qin,Wang, Da-Peng,Zhou, Meng,Yang, Yuan-Yong,He, Bin

, p. 1277 - 1285 (2022/03/14)

A one-pot approach for the asymmetric synthesis of C2-tetrasubstituted indolin-3-ones from 2-substituted indoles was developed via merging transition metal catalysis with organocatalysis. This strategy involves two processes, including CuI catalyzed oxidative dearomatization of 2-substituted indoles using O2 as green oxidant, and followed by an proline-promoted asymmetric Mannich reaction with ketones or aldehydes. A series of C2-tetrasubstituted indolin-3-ones were obtained in 35–86% yields, 2:1->20:1 dr and 48–99% ee. Moreover, the synthetic 2-tetrasubstituted indolin-3-ones could be easily transformed into 1H-[1,3] oxazino [3,4-a]indol-5(3H)-ones via a [4+1] cyclization process. In addition, the synthetic compound 3 s show certain antibacterial activity against S. aureus ATCC25923 and multi-drug resistance bacterial strain of S. aureus (20151027077) and its MIC values up to 8 μg/mL and 16 μg/mL, respectively. (Figure presented.).

B(C6F5)3-Catalyzed Electron Donor-Acceptor Complex-Mediated Aerobic Sulfenylation of Indoles under Visible-Light Conditions

Yuan, Wenkai,Huang, Jie,Xu, Xin,Wang, Long,Tang, Xiang-Ying

supporting information, p. 7139 - 7143 (2021/09/14)

An efficient B(C6F5)3-catalyzed aerobic oxidative C-S cross-coupling reaction of thiophenol with indoles was developed, affording a wide range of diaryl sulfides in good yields. An electron donor-acceptor complex between B(C6F5)3 and indoles was formed, facilitating the photoinduced single-electron transfer (SET) from indole substrates to the B(C6F5)3 catalyst. This protocol demonstrates a new reaction model using B(C6F5)3 as a single-electron oxidant.

An iron(iii)-catalyzed dehydrogenative cross-coupling reaction of indoles with benzylamines to prepare 3-aminoindole derivatives

Chen, Wei-Li,Li, Kun,Liang, Cui,Liang, Wang-Fu,Liao, Wei-Cong,Mo, Dong-Liang,Qiu, Pei-Wen,Su, Gui-Fa

supporting information, p. 9610 - 9616 (2021/12/09)

We report a green cascade approach to prepare a variety of 3-aminoindole derivatives in good to excellent yields through an iron(iii)-catalyzed dehydrogenative cross-coupling reaction of 2-arylindoles and primary benzylamines under mild reaction conditions. Mechanistic studies show that a cascade reaction involves a tert-butyl nitrite (TBN)-mediated nitrosation of 2-substituted indoles and a 1,5-hydrogen shift to afford indolenine oximes, sequential iron(iii)-catalyzed condensation and a 1,5-hydrogen shift over four steps in a one-pot reaction. The reaction shows a broad substrate scope of indoles and benzylamines and tolerates a wide range of functional groups. Moreover, the reaction is easily performed at the gram scale without producing waste after the reaction is completed. The 3-aminoindole product is purified by simple extraction, washing, and recrystallization without flash column chromatography. A double imine ligand containing the 3-aminoindole unit is facile to obtain in a 52% yield in one step. The present method highlights readily available starting materials, a simple purification procedure, and the usage of cheap, nontoxic, and environmentally benign iron(iii) catalysts. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6127-49-7