Welcome to LookChem.com Sign In|Join Free

CAS

  • or

62103-69-9

Post Buying Request

62103-69-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

62103-69-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 62103-69-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,2,1,0 and 3 respectively; the second part has 2 digits, 6 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 62103-69:
(7*6)+(6*2)+(5*1)+(4*0)+(3*3)+(2*6)+(1*9)=89
89 % 10 = 9
So 62103-69-9 is a valid CAS Registry Number.

62103-69-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methoxy-3-propylbenzene

1.2 Other means of identification

Product number -
Other names 3-n-propylanisole

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:62103-69-9 SDS

62103-69-9Relevant articles and documents

Iron-catalyzed cross coupling of aryl chlorides with alkyl Grignard reagents: Synthetic scope and FeII/FeIV mechanism supported by x-ray absorption spectroscopy and density functional theory calculations

Agata, Ryosuke,Takaya, Hikaru,Matsuda, Hiroshi,Nakatani, Naoki,Takeuchi, Katsuhiko,Iwamoto, Takahiro,Hatakeyama, Takuji,Nakamura, Masaharu

supporting information, p. 381 - 390 (2019/02/25)

A combination of iron(III) fluoride and 1,3-bis(2,6-diiso-propylphenyl)imidazolin-2-ylidene (SIPr) catalyzes the high-yielding cross coupling of an electron-rich aryl chloride with an alkyl Grignard reagent, which cannot be attained using other iron catalysts. A variety of alkoxy-or amino-substituted aryl chlorides can be cross-coupled with various alkyl Grignard reagents regardless of the presence or absence of β-hydrogens in the alkyl group. A radical probe experiment using 1-(but-3-enyl)-2-chlorobenzene does not afford the corresponding cyclization product, therefore excluding the intermediacy of radical species. Solution-phase X-ray absorption spectroscopy (XAS) analysis, with the help of density functional theory (DFT) calculations, indicates the formation of a high-spin (S = 2) heteroleptic difluorido organoferrate(II), [MgX][FeIIF2(SIPr)-(Me/alkyl)], in the reaction mixture. DFT calculations also support a feasible reaction pathway, including the formation of a difluorido organoferrate(II) intermediate which undergoes a novel Lewis acid-assisted oxidative addition to form a neutral organoiron(IV) intermediate, which leads to an FeII/FeIV cata-lytic cycle, where the fluorido ligand and the magnesium ion play key roles.

Effective hydrodeoxygenation of lignin-derived phenols using bimetallic RuRe catalysts: Effect of carbon supports

Jung, Kyung Bin,Lee, Jinho,Ha, Jeong-Myeong,Lee, Hyunjoo,Suh, Dong Jin,Jun, Chul-Ho,Jae, Jungho

, p. 191 - 199 (2017/09/06)

We have previously shown that an activated carbon-supported ruthenium catalyst promoted with ReOx (RuRe/AC) is highly active for the hydrodeoxygenation (HDO) of lignin-derived phenols (e.g., guaiacol). In this work, we have investigated the effect of carbon supports on the structure and HDO activity of bimetallic RuRe particles using three different carbon supports, i.e., activated carbon (AC), carbon black (Vulcan carbon, VC), multi-walled carbon nanotube (MWCNT). The MWCNT- and VC-supported catalysts show remarkably enhanced activity and hydrocarbon selectivity for the HDO of a range of phenolic molecules (i.e., guaiacol, eugenol, benzyl phenyl ether) compared to RuRe/AC. STEM-EDS and XPS analyses reveal that bimetallic RuRe particles are more common than monometallic Ru or Re particles in the VC- and MWCNT-supported catalysts, and hexavalent rhenium species are more easily reduced to tetravalent rhenium during the HDO reactions in these catalysts, suggesting that Ru and Re in close proximity are required for the efficient hydrogenolysis of phenols. The formation of bimetallic particles on the AC surface is likely hindered by high microporosity and high surface oxygen functionalities, both of which restrict the mobility of Re and Ru for assembly.

Chemo- and Regioselective Hydrogenolysis of Diaryl Ether C-O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Lignin-Related Fragments

Gao, Fang,Webb, Jonathan D.,Hartwig, John F.

supporting information, p. 1474 - 1478 (2016/02/12)

We report the chemo- and regioselective hydrogenolysis of the C-O bonds in di-ortho-substituted diaryl ethers under the catalysis of a supported nickel catalyst. The catalyst comprises heterogeneous nickel particles supported on activated carbon and furnishes arenes and phenols in high yields without hydrogenation. The high thermal stability of the embedded metal particles allows C-O bond cleavage to occur in highly substituted diaryl ether units akin to those in lignin. Preliminary mechanistic experiments show that this catalyst undergoes sintering less readily than previously reported catalyst particles that form from a solution of [Ni(cod)2].

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 62103-69-9