Welcome to LookChem.com Sign In|Join Free

CAS

  • or

62875-08-5

Post Buying Request

62875-08-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

62875-08-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 62875-08-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,2,8,7 and 5 respectively; the second part has 2 digits, 0 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 62875-08:
(7*6)+(6*2)+(5*8)+(4*7)+(3*5)+(2*0)+(1*8)=145
145 % 10 = 5
So 62875-08-5 is a valid CAS Registry Number.

62875-08-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-methylbutane-1,2,3-triol

1.2 Other means of identification

Product number -
Other names 3-Methyl-butan-1,2,3-triol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:62875-08-5 SDS

62875-08-5Upstream product

62875-08-5Relevant articles and documents

Unveiling the Active Surface Sites in Heterogeneous Titanium-Based Silicalite Epoxidation Catalysts: Input of Silanol-Functionalized Polyoxotungstates as Soluble Analogues

Zhang, Teng,Mazaud, Louis,Chamoreau, Lise-Marie,Paris, Céline,Proust, Anna,Guillemot, Geoffroy

, p. 2330 - 2342 (2018)

We report on a site-isolated model for Ti(IV) by reacting [Ti(iPrO)4] with the silanol-functionalized polyoxotungstates [XW9O34-x(tBuSiOH)3]3- (X = P, x = 0, 1; X = Sb, x = 1, 2) in tetrahydrofuran. The resulting titanium(IV) complexes [XW9O34-x(tBuSiO)3Ti(OiPr)]3- (X = P, 3; X = Sb, 4) were obtained in monomeric forms both in solution and in the solid state, as proved by diffusion NMR experiments and by X-ray crystallographic analysis. Anions 3 and 4 represent relevant soluble models for heterogeneous titanium silicalite epoxidation catalysts. The POM scaffolds feature slight conformational differences that influence the chemical behavior of 3 and 4 as demonstrated by their reaction with H2O. In the case of 3, the hydrolysis reaction of the isopropoxide ligand is only little shifted toward the formation of a monomeric [PW9O34(tBuSiO)3Ti(OH)]3- (5) species [log K = -1.96], whereas 4 reacted readily with H2O to form a μ-oxo bridged dimer {[SbW9O33(tBuSiO)3Ti]2O}6- (6). The more confined was the coordination site, the more hydrophobic was the metal complex. By studying the reaction of 3 and 4 with hydrogen peroxide using NMR and Raman spectroscopies, we concluded that the reaction leads to the formation of a titanium-hydroperoxide Ti-(η1-OOH) moiety, which is directly involved in the epoxidation of the allylic alcohol 3-methyl-2-buten-1-ol. The combined use of both spectroscopies also led to understanding that a shift of the acid-base equilibrium toward the formation of Ti(η2-O2) and H3O+ correlates with the partial hydrolysis of the phosphotungstate scaffold in 3. In that case, the release of protons also catalyzed the oxirane opening of the in situ formed epoxide, leading to an increased selectivity for 1,2,3-butane-triol. In the case of the more stable [SbW9O33(tBuSiO)3Ti(OiPr)]3- (4), the evolution to Ti(η2-O2) peroxide was not detected by Raman spectroscopy, and we performed reaction progress kinetic analysis by NMR monitoring the 3-methyl-2-buten-1-ol epoxidation to assess the efficiency and integrity of 4 as precatalyst.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 62875-08-5