Welcome to LookChem.com Sign In|Join Free

CAS

  • or

67675-33-6

Post Buying Request

67675-33-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

67675-33-6 Usage

General Description

(2S)-2-amino-3-phenyl-propanoic acid, also known as L-phenylalanine, is a non-essential amino acid that is important for the synthesis of proteins and neurotransmitters in the body. It is classified as a neutral, nonpolar amino acid and plays a key role in the production of several important molecules, including tyrosine, epinephrine, norepinephrine, and dopamine. L-phenylalanine is commonly found in food sources such as meat, fish, eggs, dairy products, and certain plant-based foods. It is also available as a dietary supplement and is used in the production of sweeteners, flavorings, and pharmaceuticals. L-phenylalanine has been studied for its potential role in various health conditions, including depression, attention deficit hyperactivity disorder (ADHD), and chronic pain, although more research is needed to fully understand its effects and potential benefits.

Check Digit Verification of cas no

The CAS Registry Mumber 67675-33-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,7,6,7 and 5 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 67675-33:
(7*6)+(6*7)+(5*6)+(4*7)+(3*5)+(2*3)+(1*3)=166
166 % 10 = 6
So 67675-33-6 is a valid CAS Registry Number.

67675-33-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (2S)-2-Amino-3-phenylpropanoic acid

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:67675-33-6 SDS

67675-33-6Relevant articles and documents

Recreating the natural evolutionary trend in key microdomains provides an effective strategy for engineering of a thermomicrobial N-demethylase

Gu, Zhenghua,Guo, Zitao,Shao, Jun,Shen, Chen,Shi, Yi,Tang, Mengwei,Xin, Yu,Zhang, Liang

, (2022/03/09)

N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N-bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains—including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site—was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.

A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids

Varga, Andrea,Csuka, Pál,Sonesouphap, Orlavanah,Bánóczi, Gergely,To?a, Monica Ioana,Katona, Gabriel,Molnár, Zsófia,Bencze, László Csaba,Poppe, László,Paizs, Csaba

, p. 185 - 194 (2020/04/28)

A novel phenylalanine ammonia-lyase of the psychrophilic yeast Pseudozyma antarctica (PzaPAL) was identified by screening microbial genomes against known PAL sequences. PzaPAL has a significantly different substrate binding pocket with an extended loop (26 aa long) connected to the aromatic ring binding region of the active site as compared to the known PALs from eukaryotes. The general properties of recombinant PzaPAL expressed in E. coli were characterized including kinetic features of this novel PAL with L-phenylalanine (S)-1a and further racemic substituted phenylalanines rac-1b-g,k. In most cases, PzaPAL revealed significantly higher turnover numbers than the PAL from Petroselinum crispum (PcPAL). Finally, the biocatalytic performance of PzaPAL and PcPAL was compared in the kinetic resolutions of racemic phenylalanine derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.

Investigation of Taniaphos as a chiral selector in chiral extraction of amino acid enantiomers

Xiao, Wenjie,Chen, Shuhuan,Liu, Xiong,Ma, Yu

, p. 292 - 302 (2021/03/29)

Finding chiral selector with high stereoselectivity to a variety of amino acid enantiomers remains a challenge and warrants further research. In this work, Taniaphos, a chiral ligand with rotatable spatial configuration, was employed as a chiral extractant to enantioseparate various amino acid enantiomers. Phenylalanine (Phe), homophenylalanine (Hphe), 4-nitrophenylalanine (Nphe), and 3-chloro-phenylglycine (Cpheg) were used as substrates to evaluate the extraction efficiency. The results revealed that Taniaphos-Cu exhibited good abilities to enantioseparate Phe, Hphe, Nphe, and Cpheg with the highest separation factors (α) of 3.13, 2.10, 2.32, and 2.14, respectively. Taniaphos-Cu is more conducive to combine with D-amino acid in extraction. The influences of pH, Taniaphos-Cu, and concentration and extraction temperature on extraction were comprehensively evaluated. The highest performance factors (pf) for Phe, Hphe, Nphe, and Cpheg at optimal extraction conditions were 0.08892, 0.1250, 0.09621, and 0.08021, respectively. The recognition mechanism between Taniaphos-Cu and amino acid enantiomers was discussed. The coordination interaction between Taniaphos-Cu and -COO?, π-π interaction between Taniaphos-Cu and amino acid enantiomers are important acting forces in chiral extraction. The steric-hindrance between -NH2 and -OH lead to Taniaphos-Cu-D-Phe is more stable than Taniaphos-Cu-L-Phe. This work provided a chiral extractant that has good abilities to enantioseparate various amino acid enantiomers.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 67675-33-6